
www.manaraa.com

NORTHWESTERN UNIVERSITY

Learning to Teach Computer Science:

Qualitative Insights into Secondary Teachers’ Pedagogical Content Knowledge

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Learning Sciences

By

Aleata Kimberly Hubbard

EVANSTON, ILLINOIS

September 2017

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10602566

10602566

2017

www.manaraa.com

2

© Copyright by Aleata Kimberly Hubbard 2017
All Rights Reserved

www.manaraa.com

3

ABSTRACT

Learning to Teach Computer Science:

Qualitative Insights into Secondary Teachers’ Pedagogical Content Knowledge

Aleata Kimberly Hubbard

In this dissertation, I explored the pedagogical content knowledge of in-service high

school educators recently assigned to teach computer science for the first time. Teachers were

participating in a professional development program where they co-taught introductory

computing classes with tech industry professionals. The study was motivated by three questions:

(1) what knowledge of computer science content, student thinking, and instructional strategies do

teachers display? (2) what teaching tasks do teachers undertake when planning and implementing

their lessons? and (3) how does teaching knowledge relate to the teaching tasks assumed? I

conducted a year-long, collective case study with six teachers working in the San Francisco Bay

region by gathering interview, questionnaire, observation, and assessment data at monthly

classroom visits. Data suggest that (a) teachers know more about student difficulties than

instructional strategies specific to computer science; (b) teaching tasks differ in the opportunities

they provide for developing teaching knowledge; (c) the way teaching tasks support pedagogical

content knowledge varies based on one’s level of content knowledge; and (d) teaching

confidence and epistemological beliefs influenced instructional decisions but sometimes

conflicted with external demands. The findings offer insight into the factors of practice-based

training that influence the pedagogical content knowledge development of experienced teachers

new to computer science. This work can inform the design of future initiatives to effectively

prepare secondary computer science teachers.

www.manaraa.com

4

ACKNOWLEDGEMENTS

During my first year of college, I took a class called Freshman Immigration Course

where different professors in the computer science department visited each week and gave short

presentations about their research. I still remember Roger Dannenberg demoing his music

visualization software and Anastasia Ailamaki showcasing different real-world database

applications. The projects I learned about, the enthusiasm of the speakers, and the potential for

creative expression through technology all sparked my curiosity in this thing called ‘research’.

Later that year I visited my undergraduate advisor Mark Stehlik and told him I was interested in

research but I did not know where to start. He pointed me towards Maxine Eskenazi, a scholar

who shared my interests in language and technology, who mentored me through my first

research project, my first conference presentation at CALICO, and my first internship at a

university spin-off company. These experiences were extremely validating and convinced me to

pursue a career in research. For nearly fourteen years I have been pursuing my interest in

understanding how people learn and how to support them in that process. This journey was not

without its trials. Along the way, I got lost, took some detours, and started exploring other

options. But, due to the tremendous support I received these past two years, I have rekindled my

passion for research, restarted my journey, and can offer this dissertation as my first major

contribution to the field. I owe the completion of this dissertation and the fulfillment of a dream

to the guidance, collaboration, and encouragement of so many who I would like to thank here:

To Dr. Carol D. Lee, my committee chair, thank you for believing in me, making time to

help me through this process, always pushing me to think in new ways, and serving as a role

model for excellence in scholarship.

www.manaraa.com

5

To the rest of my committee, Dr. Steve Schneider, Dr. Miriam Sherin, and Dr. Uri

Wilensky, thank you for sharing your knowledge and insights and helping me shape this project

into better a study than I would have produced on my own.

Thank you to Dr. Steve Schneider also for introducing me to the area of teacher learning

through multiple projects at WestEd, making it possible for me to complete this project while

still working, and sharing your many encouraging stories about your own dissertation process.

To Dean Penelope Peterson, thank you for allowing me to rejoin the Learning Sciences

department so that I could complete this project.

To Ms. King, Mr. Edwards, Ms. Jones, Ms. Robinson, Mr. Miller, and Mr. Perez (all

pseudonyms), thank you for participating in this study, allowing me into your classrooms, and

opening up about your experiences as computer science teachers.

To Katie D’Silva, Danielle Oberbeck, Angela Knotts, and Joseph Green, thank you for

helping me collect the data for this study and braving the early morning Bay Area traffic.

Thank you to Katie D’Silva also for helping code the study data and for sharing your

insightful observations.

To Dr. Jodi Davenport, thank you for being the research group I did not have, for

thinking through ideas with me, and sharing your wisdom on how to get things done well and on

time.

 To Dr. Yvonne Kao, thank you for letting me make this case study project my own and

always being there to discuss ideas.

To Joel Cheuoua thank you for sharing your content knowledge and helping me

understand new approaches to computer science I encountered during this project.

www.manaraa.com

6

To Dr. Sarah Levine, thank you for providing feedback on earlier drafts of this

dissertation.

To Adi Kalderon, thank you for your Hebrew translations.

To the STEM group at WestEd, thank you all for your constant encouragement that

helped me make it through many long days.

To Joel Cheuoua, Finley Hubbard, Fenesha Hubbard, and Marilyn Hearns, thank you for

your emotional support during this process and making sure I never gave up.

 “I owe this to the hands and hearts of others. Through their love I found my soul and

God and happiness. Don’t you see what it means? We live by each other and for each other.

Alone we can do so little; together we can do so much.” ~Hellen Keller

This material is based upon work supported by the National Science Foundation under

Grant No. 1348866. Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the author and do not necessarily reflect the views of the National

Science Foundation.

www.manaraa.com

7

TABLE OF CONTENTS

Abstract ... 3

Acknowledgements ... 4

Table of Contents .. 7

List of Tables .. 11

List of Figures ... 13

Chapter 1. Introduction ... 15

1.1 Statement of the Problem .. 18
1.2 Overview of the Study .. 20
1.3 Significance of the Study .. 21
1.4 Limitations .. 22
1.5 Definition of Terms... 24
1.6 Outline... 26

Chapter 2. Literature Review.. 27

2.1 Synthesis of CS PCK Literature ... 28
2.1.1. Methods ... 28
2.1.2. Findings .. 30

2.2 Computer Science Learning and Teaching ... 64
2.2.1. Nature of CS .. 65
2.2.2. CS Curricula in American High Schools .. 69
2.2.3. Transitioning to CS Teaching ... 71

2.3 Conceptual Frameworks ... 86
2.3.1. CS PCK Development Framework ... 87
2.3.2. CS PCK Framework ... 93
2.3.3. Research Questions ... 102

Chapter 3. Methods... 103

3.1 Methodology ... 103
3.2 Professional Development Program ... 106
3.3 Participants and Context ... 111

3.3.1. Participating Teachers .. 112
3.3.2. Professional Development Stages ... 114
3.3.3. Locale .. 115
3.3.4. Schools .. 117

www.manaraa.com

8

3.4 Data Collection Procedures ... 117
3.5 Data Sources ... 122

3.5.1. Pre-lesson Questionnaire.. 122
3.5.2. Post-lesson Questionnaire .. 123
3.5.3. Lesson Reflection Interview .. 124
3.5.4. Think-aloud Interview ... 124
3.5.5. CoRe Reflection Interview .. 128
3.5.6. Observation Protocol I ... 128
3.5.7. Observation Protocol II .. 129
3.5.8. PCK Questionnaire ... 130
3.5.9. Teaching Beliefs Questionnaire .. 131
3.5.10. Main Study Tasks .. 133

3.6 Data Reduction.. 133
3.6.1. Interview Transcripts and Unitization .. 134
3.6.2. Questionnaire Item Selection .. 139
3.6.3. Observation Protocols .. 141

3.7 Data Analysis .. 143
3.7.1. Interviews and Open-ended Questionnaire Items ... 143
3.7.2. Closed-ended Questionnaire Items ... 144
3.7.3. Observations ... 145
3.7.4. PCK Questionnaire ... 146
3.7.5. Teaching Beliefs Questionnaire .. 146
3.7.6. Content Assessment ... 147

3.8 Trustworthiness ... 147
3.8.1. Data Source and Method Triangulation ... 148
3.8.2. Analyst Triangulation ... 149
3.8.3. Prolonged Engagement and Persistent Observation 159

3.9 Researcher’s Role ... 161

Chapter 4. CS Teaching Knowledge .. 165

4.1 Introduction ... 165
4.2 Research on Learning and Teaching CS ... 166

4.2.1. Knowledge of Student Understanding .. 166
4.2.2. Instructional Strategies ... 168
4.2.3. Linear Data Structures ... 169

4.3 Method .. 170
4.3.1. Participants ... 170
4.3.2. Data Collection ... 170
4.3.3. Data Analysis .. 171

4.4 Results ... 173
4.4.1. Linear Data Structures ... 173
4.4.2. Most Difficult Computing Topics .. 181
4.4.3. Content Knowledge ... 185

4.5 Discussion ... 189

www.manaraa.com

9

Chapter 5. Instructional Responsibilities .. 193

5.1 Introduction ... 193
5.2 Research on Instructional Responsibilities ... 194
5.3 Method .. 195

5.3.1. Participants ... 195
5.3.2. Data Collection and Analysis ... 195

5.4 Results ... 198
5.4.1. Instructional Responsibilities.. 198
5.4.2. Relationship Between Responsibilities and Teaching Knowledge 210

5.5 Discussion ... 222

Chapter 6. Confidence, Epistemologies, and Teaching .. 224

6.1 Introduction ... 224
6.2 Research on Confidence and Epistemologies ... 225

6.2.1. Confidence .. 225
6.2.2. Epistemological Beliefs ... 226

6.3 Methods... 227
6.3.1. Participants ... 227
6.3.2. Data Collection and Analysis ... 228

6.4 Results ... 230
6.4.1. Feelings of Confidence ... 230
Meanings of comfort and preparedness. ... 230
Patterns of comfort and preparedness. ... 231
Factors influencing confidence. .. 236
6.4.2. Beliefs about Teaching and Learning ... 238

6.5 Discussion ... 248

Chapter 7. Discussion ... 250

7.1 Summary of Findings .. 250
7.2 Implications for Research ... 258
7.3 Implications for Policy and Practice ... 263
7.4 Conclusion .. 266

References ... 267

Appendices .. 312

Appendix A ... 313

Appendix B ... 315

Appendix C ... 317

www.manaraa.com

10

Appendix D ... 318

Appendix E ... 326

Appendix F.. 331

Appendix G ... 333

Appendix H ... 334

Appendix I .. 336

Appendix J .. 337

Vita .. 338

www.manaraa.com

11

LIST OF TABLES
Table 2.1 Armoni’s (2011) Recommendations for Pre-service CS Training 42

Table 2.2 Research methods used to study CS PCK .. 53

Table 2.3 Articles describing factors influencing CS PCK .. 60

Table 2.4 Denning’s (2003) Great Principles of Computing .. 68

Table 2.5 K-12 Computer Science Framework .. 70

Table 2.6 Pedagogical Tools for Computer Science (Hazzan et al., 2015) 99

Table 2.7 Computer Science Question Types (Hazzan, Lapidot, & Ragonis, 2015) 101

Table 3.1 Professional Development Stage .. 115

Table 3.2 School Profiles by Teacher ... 117

Table 3.3 Case study visit activities .. 119

Table 3.4 Pre-lesson Questionnaire Open-ended Items Included in Analysis 139

Table 3.5 Post-lesson Questionnaire Open-ended Items Included in Analysis 140

Table 3.6 Coding Scheme Used with Interviews and Open-ended Questionnaire Items 144

Table 3.7 Interrater Reliability for Observer Training.. 152

Table 3.8 Interrater Reliability for Coder Training .. 157

Table 3.9 Test of Equal Proportions for Post-interrater Reliability Coding 160

Table 4.1 Summary of novice programmer understanding from Robins, Rountree, and Rountree

(2003) and Clancy (2004) ... 167

Table 4.2 Student Difficulties with Linear Data Structures .. 175

Table 4.3 Student Difficulties with Linear Data Structures Not Mentioned by Participants 176

Table 4.4 Methods of Addressing Student Difficulties with Linear Data Structures 176

www.manaraa.com

12

Table 4.5 Methods of Addressing Student Difficulties with Linear Data Structures Not

Mentioned by Participants .. 177

Table 4.6 Student Difficulties and Methods for Linear Data Structures Mentioned by Participants

... 178

Table 4.7 Student Difficulties and Methods for Linear Data Structures Mentioned by Participants

... 179

Table 4.8 Rationale for Lessons/Activities on Linear Data Structures 180

Table 4.9 Most Difficult Computing Topics Covered in Teachers’ Courses 182

Table 5.1 Coding Scheme of Instructional Responsibilities ... 197

Table 5.2 Visits Where Teacher Ratings Agree with Observation Data on Distribution of

Instructional Tasks .. 201

Table 5.3 Teacher Quotations About Responsibilities Related to Planning and Organizing

Lessons .. 204

Table 5.4 Teacher Quotations About Responsibilities Related to Implementing and Monitoring

Instruction ... 205

Table 5.5 Relationship Between Instructional Responsibilities and Teaching Knowledge 222

Table 6.1 Teaching Belief Categories (based on Wong & Luft, 2015) 229

Table 6.2 Teacher Explanations of Comfort and Preparedness .. 234

www.manaraa.com

13

LIST OF FIGURES

Figure 2.1. Baxter’s (1987) conceptualizations of PCK and CK. ... 46

Figure 2.2. Lapidot’s (2005) content reasoning model. .. 47

Figure 2.3. KUI’s theoretical framework of CS PCK (Bender et al., 2015). 49

Figure 2.4. Woollard’s (2005) framework of pedagogic metaphor. ... 50

Figure 2.5. Baxter’s (1987) interview protocol on teaching loops. .. 56

Figure 2.6. Sample item from Ohrndorf and Schubert’s PCK task (2013). 57

Figure 2.7. Ragonis and Hazzan (2009) Tutoring Session Feedback Worksheet. 58

Figure 2.8. Theoretical framework of CS PCK development. .. 89

Figure 2.9. Theoretical framework of CS PCK. ... 94

Figure 3.1. TEALS co-teaching model. .. 108

Figure 3.2. San Francisco Bay Area counties represented in case studies. 116

Figure 3.3. Race within San Francisco Bay counties represented in the case study 116

Figure 3.5. Data source collection timeline. ... 120

Figure 3.6. Data accounting sheet. Cells highlighted in red indicate missing data. 121

Figure 3.7. Think-aloud assessment prompt. .. 126

Figure 3.8. Think-aloud student work prompt. ... 127

Figure 3.9. Metatags applied to transcription and questionnaire files.. 138

Figure 3.10. Percentage of codes applied to interview and open-ended questionnaire data. 159

Figure 4.1. A visual representation of the array called myList which stores ten values. 169

Figure 5.1. Self-reported distribution of instructional tasks averaged across the school year. ... 200

www.manaraa.com

14

Figure 5.2. Number of interview and questionnaire units where teachers discussed their

instructional responsibilities. .. 207

Figure 6.1. Participants’ self-reported ratings of comfort and preparedness averaged across the

school year. ... 233

Figure 6.2. Participants’ self-reported ratings of comfort and preparedness averaged across fall

and spring semesters. .. 235

Figure 6.3. Participants’ beliefs about teaching .. 239

Figure 6.4. Participants’ beliefs about student learning .. 243

www.manaraa.com

15

CHAPTER 1. INTRODUCTION

In the past decade, a powerful educational movement has emerged to introduce all of

America's youth to computer science. Many advocates argue that studying computer science is

imperative to preparing students for the growing number of careers across disciplines that will

require an understanding of computing (e.g., Seehorn et al., 2011). Across the country, a wealth

of programs and policies have been initiated to support students learning computer science. For

example, New York, San Francisco, Chicago, and Arkansas are implementing computing

curricula across their school districts (Arkansas Code Annotated, 2015; Chicago Public Schools,

2014; San Francisco Unified School District, 2015; The City of New York, 2016). Numerous

not-for-profit organizations such as Girls Who Code, Black Girls Code, and Intel Computer

Clubhouse have created out-of-school learning experiences targeting populations

underrepresented in the computing field. Advocacy groups like Code.org and Alliance for

California Computing Education for Students and Schools are promoting legislation to include

computer science in the core K-12 curriculum. With the announcement of former President

Obama's Computer Science for All initiative (The White House, 2016), funding for the research

and development of computing education interventions is expected to increase. A major requisite

to the sustainability of these plans is a sufficient pool of qualified teachers versed in both

computing content and computing pedagogy who can instruct students.

However, there is a shortage of computer science teachers at the primary and secondary

level. One reason for this scarce supply is a limited number of pre-service training programs

available to prepare aspiring teachers. Given the paucity of pre-service opportunities, alternative

pathways for in-service educators exist through computer science teaching endorsements and

www.manaraa.com

16

accreditation (Lang, Galanos, Goode, Seehorn, & Trees, 2013). For example, educators in

California can teach computer science either with certification in mathematics, business, or

industrial and technology education or with supplementary authorization in computer concepts

and applications (Bernier, 2012). However, manifold pathways make it possible for teachers to

enter computer science classrooms without adequate preparation. The computer science

education community has recognized a need to support these teachers in developing the requisite

knowledge and skills reflective of our current understanding of how to effectively teach and

increase participation in computing (Ericson et al., 2008).

Studies of teaching have revealed that effective instruction requires a base of multiple

skills and types of knowledge. For example, researchers have shown that positive student

outcomes are related to teacher domain knowledge (Darling-Hammond, 2000; Wayne &

Youngs, 2003) and inclusion of pedagogical strategies relevant to students’ cultural backgrounds

(Gay, 2002). These knowledge areas do not exist in isolation. Possessing a high level of one type

of knowledge is not sufficient for effective teaching. One of the most influential

conceptualizations of the interconnectedness of different types of teacher knowledge is

Shulman’s (1986) idea of pedagogical content knowledge (PCK). PCK describes the interplay

between a teacher’s understanding of subject matter, students, and instruction and represents a

type of knowledge necessary for teaching that industry professionals (e.g., software engineers) or

teachers of other domains generally do not possess or need.

In-service computer science teachers come from assorted backgrounds and thus vary in

the PCK and experiences they bring into their classrooms (Ericson et al., 2008). For example, a

tech industry professional transitioning into teaching may possess deep content knowledge of

www.manaraa.com

17

computing but have no training on assessing learning or pacing instruction. In contrast, an

experienced mathematics educator teaching a computer science course for the first time might

attend to selecting materials appropriate to students, but may lack relevant examples to help

students confront their misconceptions. Furthermore, the field of computing is constantly

changing, requiring teachers to stay one step ahead of their students to learn new material,

programming languages, and paradigms (Gal-Ezer & Stephenson, 2010). A veteran teacher who

taught computer science in the 1980s when BASIC and Pascal were popular programming

languages may not be versed in current programming paradigms or equity practices to support

diverse learners. Depending on their pathway into computer science classrooms, teachers will

require different supports to supplement the weaker areas of their PCK.

Professional development (PD) programs are one avenue through which educators can

develop their teaching knowledge. Various types of activities are used in delivering professional

development including workshops, courses for credit, teacher study groups, conferences, teacher

networks, committees, mentoring, internships, and resource centers (Garet, Porter, Desimone,

Birman, & Yoon, 2001). A plethora of professional development opportunities have been created

for computer science teachers. For example, Google's CS4HS initiative offers funding for the

planning and development of K-12 computer science professional development programs across

the globe and more than 400 programs have been funded (“Google CS4HS,” n.d.). While

teachers can learn about instructional strategies and subject matter at professional development

programs, classroom experiences are needed to influence change in teaching practice (D. L. Ball

& Cohen, 1999; Magnusson, Krajcik, & Borko, 1999; van Driel, Verloop, & de Vos, 1998).

www.manaraa.com

18

In-service teachers, whether trained in other disciplines or possessing professional

experience in the tech industry, are making computer science possible in American classrooms.

These educators come from various backgrounds and differ in their readiness to adequately teach

computing. Professional development opportunities help these teachers fill gaps in their teaching

knowledge. Understanding how in-service teachers incorporate knowledge gained from

professional development opportunities into their teaching practice can help us understand how

best to support them.

1.1 Statement of the Problem

Research points to the value of linking professional development to authentic practice (D.

L. Ball & Cohen, 1999; Garet et al., 2001). Educational partnerships with practitioners of a given

discipline (e.g., a scientist working at a research institute, a software developer working in

industry) are one form of professional development that allows teachers to connect their learning

directly to their daily work. These collaborations tend to involve joint or distributed effort around

team teaching, curriculum development, and learning opportunities for teachers (Grobe, Curnan,

& Melchior, 1990). In science education, for example, partnerships like Columbia University’s

Summer Research Program for middle and high school teachers in New York City have

benefitted teachers by improving their content knowledge, teaching skills, and self-efficacy

(Powell-Moman & Brown-Schild, 2011; Silverstein, Dubner, Miller, Glied, & Loike, 2009).

However, when situated within classrooms, the learning opportunities that these partnerships

offer will depend on the particular contexts within which they occur and on the participating

students, teachers, and external partners. For example, Nelson’s (2005) study of the PIESS

program demonstrated how pairs of K-12 teachers and graduate students either negotiated,

www.manaraa.com

19

exchanged, or rejected each other’s expertise regarding science content knowledge, disciplinary

practices, and education during their co-teaching. Each stance towards knowledge sharing had

differing levels of impact on each partner’s professional learning; some participants had

transformative experiences while others resisted change. Although not discussed thoroughly in

her study, Nelson also noted that “gender, personality, power, and the community, school, and

classroom cultures were evident as factors affecting coparticipation and dialogue” (Nelson, 2005,

p. 384).

Given the diversity of backgrounds of computer science teachers, they likely vary in the

content knowledge they bring to the classroom and the beliefs they hold about teaching and

learning in general and about computer science instruction specifically. Furthermore, the push to

broaden participation in the field means the computer science student population will be more

diverse than before (Cuny, 2015) and learners will bring differing experiences and interests into

the classroom. Lastly, the instructional roles undertaken in classroom partnerships will likely

depend on individual traits like teacher-volunteer compatibility and each participants’ level of

content knowledge (Scruggs, Mastropieri, & McDuffie, 2007). All the variety confronting

teachers entering computer science will impact what happens in classrooms and, therefore, what

instructional moments are available to help teachers improve their practice. The specific problem

addressed in this dissertation is the development of experienced mathematics teachers' computer

science PCK under highly idiosyncratic circumstances within on-the-job professional

development.

www.manaraa.com

20

1.2 Overview of the Study

This dissertation reports on findings from a collective case study conducted during the

2015-2016 school year with six teachers located in the San Francisco Bay Area. The goal of this

study was to examine the PCK of experienced secondary mathematics teachers transitioning into

computer science while collaborating with a content expert to deliver introductory computing

courses. Each teacher was visited approximately once per month in their computer science

courses and once in a class of their main discipline. During each visit, teachers were studied as

they planned, enacted, and reflected on their lessons. Data collected included questionnaires

completed before and after each visit, classroom observations, interviews, and tasks. This study

is a component of Developing Computer Science Pedagogical Content Knowledge Through On-

the-Job Learning (CSPCK), a five-year, NSF-funded project conducted by WestEd to study on-

the-job training for computer science high-school teachers. CSPCK has two goals: (1) to identify

the components of an on-the-job training model that effectively prepares in-service high school

educators to teach CS and (2) to develop a theoretical framework and a suite of assessment items

to measure PCK for CS. CSPCK focuses on teachers participating in TEALS (Technology

Education and Literacy in Schools), a program that recruits and trains volunteers from the tech

industry and places them into classrooms to co-teach with high school teachers. At the beginning

of a TEALS partnership, volunteers lead lessons allowing teachers to focus on learning course

content. As teachers gain experience and confidence with course materials, they take on more

instructional responsibility. At the end of the partnership, high school teachers lead courses

independently. The TEALS context was used to examine participants’ computer science PCK

and the relationship between their PCK and their teaching tasks.

www.manaraa.com

21

1.3 Significance of the Study

The recent groundswell of interest in computer science education has created a pressing

need for computing teachers at the secondary level. We don't just need teachers, we need

qualified teachers. This study investigates how experienced educators from other disciplines

develop the knowledge base needed for effective computer science instruction while working in

authentic settings with the support of content experts. With a focus on in-service teachers new to

computing, this dissertation differs from prior work on computer science PCK focused on either

pre-service teachers or experienced educators. Exploring PCK development in a group of

educators who have developed pedagogical knowledge but varying levels of subject matter

knowledge is important because it reflects a reality for many computer science teachers. The

domain is dynamic and computer science teachers will need to constantly update their content

knowledge base as new tools and technologies emerge. This study takes steps towards helping us

understand how PCK changes as teachers learn to teach new content.

The results of this study may also be useful to stakeholders invested in strengthening the

computer science teaching force. Although the impetus to increase access to computer science in

American schools exists, the field is still figuring how best to achieve this goal. Teacher

educators can use the results of this dissertation to identify and adapt successful components of

on-the-job teacher training into their professional development programs. Administrators who

are implementing computer science programs in their states can benefit from understanding the

growth trajectory of teachers new to computer science which will help in establishing realistic

goals for transitioning teachers. Furthermore, this dissertation provides insight into the factors

that motivate transitioning computer science teachers. Along with training educators in the

www.manaraa.com

22

requisite pedagogical and content knowledge, we also need to attend to how the initial

experiences of teachers new to computer science influence retention. These efforts will be in

vain if teachers leave the classroom because they are overwhelmed or lured towards other

careers.

1.4 Limitations

This dissertation focuses on high school teachers working in the San Francisco Bay Area

and unique features of this context may influence study results. The region contains Silicon

Valley, home to many leaders of the technology sector (e.g., Google, Facebook, and Apple), and

some of the wealthiest counties in America. Close proximity to this tech hub might provide

teachers and students with more opportunities to interact with computing than their peers in other

parts of the country, which, in turn, can influence the classroom experiences that support PCK

development. While the goal of this work is not to generalize to all teaching contexts, I did seek

variety in school and community contexts when recruiting participants. To capture a broad

perspective on the different ways in which teachers develop PCK, I recruited participants from

three distinct localities within the San Francisco Bay Area.

A second limitation concerns the relationship between mathematics, computer science,

and subject matter knowledge. All the participating teachers were certified in mathematics. As

mentioned above, certification in mathematics allows one to teach computer science in the state

of California. Mathematical reasoning and techniques are integral to computer science (Joint

Task Force on Computing Curricula & Society, 2013), and so mathematics teachers may have an

easier time learning computer science content than teachers trained in other disciplines. This

www.manaraa.com

23

study does not provide insight into the PCK of teachers entering computer science from other

subjects.

A third limitation of this study relates to the time frame of data collection. Teachers were

visited approximately once per month during the school year, and, as such, observations were

often conducted on one day of a lesson spanning multiple sessions. Thus, the evidence gathered

in this study does not represent a complete picture of teachers' PCK across a topic. For example,

a teacher might spend the first day of a lesson providing direct instruction on looping constructs

and spend the second day reviewing those constructs. A visit on the first day of this lesson might

reveal more information about the teacher's instructional practices while a visit on the second day

might reveal more information about the teacher's knowledge of assessment. Monthly visits were

chosen over lesson visits in order to capture evidence of teachers' PCK as they gained more

experience in the classroom across the school year.

Lastly, the in-service professional development model observed in this study assumes

that teachers will integrate their incipient content knowledge with their existing pedagogical

knowledge to develop PCK for computer science. By focusing only on experiences in computer

science classrooms, I would have no information on how other teaching experiences influenced

participants’ PCK development in computer science. To partly address this methodological

deficiency, teachers were observed once during a lesson in their main subject area. While a

single visit cannot capture the entirety of a teacher's knowledge and practices, it does provide an

initial point of contrast to the PCK observed in their computing classes.

www.manaraa.com

24

1.5 Definition of Terms

Some of the terms central to this dissertation carry multiple meanings. Below I provide

the definitions I will use for computer science, pedagogical content knowledge, transitioning

computer science teacher, and volunteer content expert.

Computer Science (CS). Computer science is "the study of computers and algorithmic

processes, including their hardware and software designs, their applications, and their impact on

society" (Tucker et al., 2006, p. 2). It is a subfield within the field of computing along with

computer engineering, information systems, information technology, and software engineering.

The field is distinguished from other computing disciplines in its focus on the design and

implementation of software, devising new ways to use computers, and the development of

effective solutions for computing problems (The Joint Task Force for Computing Curricula

2005, 2005). Although CS is often conflated with other computing domains or computer-related

activities with the K-12 landscape (CSTA, 2014), the aforementioned definition will be adopted

in this dissertation.

Pedagogical Content Knowledge (PCK). Shulman’s (1986) PCK framework describes

the interplay between a teacher’s understanding of subject matter, students, and instruction. It

consists of "the ways of representing and formulating the subject that make it comprehensible to

others…[it] also includes an understanding of what makes the learning of specific topics easy or

difficult" (Shulman, 1986, p. 9). Many educational researchers have used the PCK construct to

describe and investigate the knowledge teachers draw upon in their practice. After years of work

in fields such as mathematics education and science education, scholars agree that PCK is

essential to achieve the aims of teaching but they disagree on its specific components (Abell,

www.manaraa.com

25

2008; Depaepe, Verschaffel, & Kelchtermans, 2013). In this dissertation, I focus on teachers'

knowledge of computer science for instruction and teachers' knowledge of students. These PCK

components relate to:

teachers' abilities to: (1) organize instruction around an accurate, precise, and coherent set

of interrelated conceptual learning goals; (2) anticipate, elicit, interpret, and address

particular challenges the content poses for their students; and (3) sequence and represent

that content during instruction in a way that advances their students' understanding.

(Daehler, Heller, & Wong, 2015, p. 45)

Transitioning CS Teacher. The teachers who participated in this dissertation were

experienced, in-service high school teachers certified in mathematics who are beginning to teach

the CS courses offered through TEALS. To distinguish these participants from teachers who

have received pre-service training or certification in CS, I will refer to them as transitioning CS

teachers.

Volunteer Content Expert. The TEALS program recruits volunteers from the tech

industry to support teachers in delivering CS courses. TEALS volunteers are not certified

teachers, although some have experience teaching in informal learning programs or during their

undergraduate studies. These volunteers contribute what Ball, Thames, and Phelps (2008) call

common content knowledge or "the knowledge teachers need in order to be able to do the work

that they are assigning their students" (D. L. Ball et al., 2008, p. 6). I will refer to these

participants as volunteer content experts.

www.manaraa.com

26

1.6 Outline

The remainder of this dissertation is divided into six chapters. In chapter two, I present a

literature review focused on conceptualizations of CS PCK, methods of studying CS PCK, and

factors influencing CS PCK development. Given the limited amount of literature on CS PCK, I

supplement the review with a summary of PCK research in other domains. Given that PCK is

domain specific, I also discuss the nature of CS, K-12 CS education, and challenges mathematics

teachers might face transitioning into this discipline. I conclude chapter two with the presentation

of the conceptual frameworks informing my dissertation and the specific research questions I

addressed. In chapter three, I present the methodology undergirding my research, details of the

TEALS professional development model, and the six teachers who participated in the case study.

In the second half of the chapter, I detail my data sources, my procedures for data collection,

reduction, and analysis, and my methods for establishing the trustworthiness of the data. At the

end of the chapter I briefly describe my role as a researcher and the prior experiences that

influenced my interpretation of the case study data. The study results are separated into three

chapters. In chapter four, I focus on teachers’ knowledge of CS content and student thinking. In

chapter five, I explore the instructional responsibilities teachers undertook when planning and

implementing their lessons and how those responsibilities related to their teaching knowledge. In

chapter six, I investigate how confidence and epistemological beliefs influenced teachers’

instructional responsibilities. While not an initial focus of this dissertation, teacher comments

about their beliefs and confidence were prominent during interviews and encouraged me to

devote more attention to the way these factors influenced PCK development. In the final chapter,

I discuss the case study results, limitations, implications, and suggestions for future work.

www.manaraa.com

27

CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

For some years now, the CS education community has focused on training in-service

teachers to satisfy the demand for more computing courses in K-12 schools. Although the

number of professional learning opportunities for CS educators has increased, many of these

programs do not last beyond a week and fail to include a focus on pedagogical content

knowledge specific to computing (Menekse, 2015). Outside of this training, the classroom

becomes a prominent milieu for CS teacher learning where unpredictable and idiosyncratic

events provide opportunities to improve upon practice. How, then, can we better support the

professional development of computing educators both in formal training programs and in their

everyday teaching?

Specifying pedagogical content knowledge for CS and how it develops over time can

help identify focal topics for professional development programs. Also, identifying CS teaching

tasks can provide insight into how practice supports PCK development. Over many decades,

efforts made towards understanding these topics in other domains have resulted in more effective

teacher training (e.g., Desimone, Porter, Garet, Yoon, & Birman, 2002; Heller, Daehler, Wong,

Shinohara, & Miratrix, 2012). However, the CS education community is only beginning to

develop a base of similar work related to PCK and teaching. In the first part of this literature

review, I synthesize the extant research on CS PCK and situate it within the extensive research

base of PCK in other disciplines. Given that PCK is content specific, I also provide an overview

of the discipline of CS as it relates to learning and teaching and contrast it against mathematics, a

domain in which many transitioning CS teachers were trained. In the final section of this chapter,

www.manaraa.com

28

I introduce (a) a conceptual framework of CS PCK development, (b) a conceptual framework of

CS PCK for transitioning teachers, and (c) the resultant research questions driving this

dissertation.

2.2 Synthesis of CS PCK Literature

I focus on the following questions in this section of the literature review: (1) How is PCK

conceptualized in CS educational research? (2) How is PCK investigated by CS education

researchers? (3) What influences the development of PCK in CS teachers? I begin this synthesis

review by describing my method for identifying relevant articles. Then, I summarize the

literature on teacher knowledge and teacher learning in fields outside of CS. Lastly, I summarize

literature on CS teacher knowledge, responding to the aforementioned questions.

2.2.1. Methods

Computer science education research (CSER) is a relatively young field influenced by the

methods, research designs, and philosophical worldviews of various fields like psychology,

computer science, and education (Fincher & Petre, 2004a). These communities vary in

expectations for the dissemination of scholarly work and the value placed on different forms of

dissemination (Joy, Sinclair, Sun, Sitthiworachart, & López-González, 2008). I conducted a

review of the CSER literature by searching for both academic journals and conference

proceedings in several databases that index scholarly work from the education, computer science,

and engineering communities, namely, Education Research Complete, Psychology & Behavioral

Sciences Collection, SocINDEX with Full Text, American Psychological Association

PsycARTICLES, Education Resources Information Center (ERIC), ACM Digital Library, and

IEEE Xplore Digital Library. Publication titles and abstracts were searched for the terms

www.manaraa.com

29

computer science teachers or computer in conjunction with professional development,

pedagogical content knowledge, and teacher preparation. The initial search returned 314 results.

Only papers written in English and focused on secondary teachers were included. Opinion pieces

were excluded. Conference papers were excluded if they described a poster or provided only an

abstract. Papers published prior to 2011 relating to the development of CS teaching knowledge

were excluded because Armoni (2011) conducted a review of this literature spanning from 1975

to 2010. Papers that only provided descriptions of professional development programs were

excluded because Meneske (2015) provides a review of CS professional development programs

spanning from 2004 to 2014. Three conference papers could not be accessed and are excluded

from this review. Inclusion and exclusion criteria winnowed the list to 25 papers. Each article

was summarized and then categorized along the following dimensions: (a) literature review

questions addressed, (b) country of research, (c) school level focus, and (d) a focus on pre-

service or in-service teachers. Where appropriate, I also categorized articles based on the

following: (a) category of teaching knowledge, (b) definition of teaching knowledge, (c)

theoretical framework, (d) research methods, (e) study time span, and (f) number of participants.

Lastly, I conducted a cross-case analysis of the papers to identify differences and similarities

based on these dimensions.

I also searched for articles synthesizing research on teaching knowledge outside of CSER

using the following databases: Education Research Complete, Psychology & Behavioral

Sciences Collection, SocINDEX with Full Text, American Psychological Association

PsycARTICLES, and ERIC. Publication titles and abstracts were searched for the term review in

conjunction with PCK, pedagogical content knowledge, knowledge of teaching, teaching

www.manaraa.com

30

knowledge, and teacher learning. The initial search returned 297 results. Only peer-reviewed

articles or book chapters written in English, focused on K-12 teaching, and published after 1999

were included. Articles also needed to focus on broad disciplines (e.g., mathematics) and not

subdomains (e.g., geometry). Reviews were excluded if they focused on technological

pedagogical content knowledge (TPACK) given my focus on teaching knowledge of specific

subject areas. Reviews focused only on pre-service teachers were excluded given my focus on

in-service teachers. Inclusion and exclusion criteria winnowed the resultant list to 17 papers. I

conducted a narrative literature review of these articles to summarize how scholars in domains

outside of CS conceptualize, investigate, and support the development of teacher knowledge.

Searching through online databases will only reveal a percentage of articles relevant to a

literature review, so other techniques such as reference branching and expert review are

recommended to help researchers identify additional articles of interest (Randolph, 2009). I

identified an additional 25 articles to include in this review through reference branching and a

review of journals focused on CS education research and teacher education research. In total, 37

CSER papers and 30 general papers are included in this review.

2.2.2. Findings

Research on Teacher Knowledge and Learning. In the 1980s, scholars began to turn

their attention towards specialized teaching knowledge that went beyond general pedagogy and

an understanding of content (Matthews, 2013). For example, the Cognitively Guided Instruction

(CGI) group studied first grade teachers’ knowledge of teaching addition and subtraction by

assessing their ability to distinguish problem types, judge the relative difficulty of problems, and

anticipate student problem solving strategies (Carpenter, Fennema, Peterson, & Carey, 1988).

www.manaraa.com

31

Shulman (1986) introduced PCK as a theoretical construct to analyze this specialized teaching

knowledge which he described as knowledge of:

the most regularly taught topics in one’s subject area, the most useful forms of

representation of those ideas, the most powerful analogies, illustrations, examples,

explanations, and demonstrations…[it] also includes an understanding of what makes the

learning of specific topics easy or difficulty. (p. 9)

This framework has been extremely influential in the study of teacher learning particularly in

mathematics (Depaepe et al., 2013) and science (Schneider & Plasman, 2011).

Over the years, researchers have attempted to further specify PCK into subcomponents

which have included: student conceptions and difficulties, instructional strategies and

representations, types of tasks and their cognitive demands, assessment, educational ends,

curriculum and media, context, content, and general pedagogy (Depaepe et al., 2013; S. Park &

Oliver, 2008). Some of the more popular PCK conceptualizations derived from Shulman’s work

are Teacher Education and Development Study: Learning to Teach Mathematics (TEDS-M);

Mathematical Knowledge for Teaching (MKT); Professional Competence of Teachers

Cognitively Activating (COACTIV); and Knowledge for Algebra Teaching (KAT) (Blömeke &

Delaney, 2012; Matthews, 2013). The many different conceptualizations of the PCK framework

have not converged on a clear definition of the construct and many subdomains of PCK are

difficult to distinguish (Hashweh, 2005; Matthews, 2013). It is important to note that PCK is

subject specific and so it relates to content knowledge. Researchers have found the two types of

knowledge to be strongly correlated (Blömeke & Delaney, 2012). Without strong content

knowledge, teachers struggle to notice and understand student thinking and to participate in

www.manaraa.com

32

useful discussions with their colleagues (Goldsmith, Doerr, & Lewis, 2014). While researchers

have progressed in specifying PCK components, the development of those components is less

well understood (Abell, 2008).

Research on teacher learning in general can provide insight into how PCK develops.

Learning to teach is a complex process mediated by both individual factors (e.g., beliefs,

orientation to learning) and external factors (e.g., school culture, learning opportunities) (Avalos,

2011; Opfer & Pedder, 2011). Teacher learning is an incremental, career-long process that

initially focuses on students and their ideas, then shifts towards a focus on teaching, and lastly

concentrates on developing a repertoire of teaching practices (Schneider & Plasman, 2011).

Some teachers direct their learning towards immediate use of new strategies in their practice

while others focus more on understanding the theory behind teaching practice and why

instructional strategies are effective (Vermunt & Endedijk, 2011). Teacher learning ideally leads

to changes in the subject matter content of lessons, classroom discourse, and encouraging

students to take responsibility for their own learning, which typically take at least a year to

appear (Goldsmith et al., 2014; Postholm, 2012). Learning can also be reflected through changes

in knowledge and beliefs, intentions for practice, emotions, task performance, awareness and

understanding, personal development, teamwork, role performance, academic knowledge and

skills, decision making and problem solving, and judgement (Vermunt & Endedijk, 2011).

A variety of activities can support teacher learning including professional conversations,

collaboration with colleagues, and critical reflection (Dogan, Pringle, & Mesa, 2016; Goldsmith

et al., 2014; Postholm, 2012; Randi & Zeichner, 2004). Professional development opportunities

are more effective when they are coherent, provide a strong focus on content, extend over time,

www.manaraa.com

33

provide mentoring, involve teachers who work in comparable contexts, and model practices

teachers can use in their classrooms (Dunst, Bruder, & Hamby, 2015; Postholm, 2012;

Whitworth & Chiu, 2015). The differing backgrounds, amount of teaching experience, and prior

knowledge participants bring to learning opportunities make it challenging for professional

development providers to create effective learning opportunities (Wilson, Rozelle, & Mikeska,

2011). Some scholars argue that experiential learning opportunities should be favored over

traditional in-service learning opportunities because they allow teachers to engage with materials

of practice, can integrate into teachers’ daily work, and allow teachers to generate knowledge by

reflecting on their own practice (Opfer & Pedder, 2011; Randi & Zeichner, 2004).

In fact, some teacher education researchers are beginning to focus less on the domains of

teacher knowledge and more on describing the core practices of teaching that enable educators to

apply their knowledge in classrooms (Forzani, 2014; McDonald, Kazemi, & Kavanagh, 2013).

Core practices, also called high-leverage practices, occur frequently in teaching, can be enacted

in various types of classrooms, are acquirable, authentic, support learning about students and

teaching, research-based, and might improve student achievement (Grossman, Hammerness, &

McDonald, 2009). However, scholars are still undecided about which core practices best support

student learning or what teaching knowledge is needed for effectively using core practices (D. L.

Ball & Forzani, 2009).

The research base also indicates that beliefs and efficacy play an important role in

acquiring teaching knowledge. Beliefs are ideas teachers hold about the nature of teaching and

student learning and how the work of teaching should be enacted. These beliefs can depend on

the particular school or students a teacher works with as well as the teacher’s career stage and

www.manaraa.com

34

prior experiences (Luft & Roehrig, 2007; Postholm, 2012). Certain epistemological stances (e.g.,

constructivist views that see learners as active agents in constructing their own knowledge and

see the aim of science as developing theories about the world) might encourage richer PCK

development than other stances (e.g., views that support a transmission view of knowledge

acquisition and see the aim of science as collecting facts about the world) (Hashweh, 1996,

2013). Misalignment between a teacher’s beliefs and the theory undergirding professional

development programs can lead teachers to reject their training (Goldsmith et al., 2014). Efficacy

relates to teacher beliefs about their ability to accomplish professional duties. While a lack of

efficacy can prevent teachers from learning, it can increase through peer collaboration

(Goldsmith et al., 2014). Self-efficacy is also related to content knowledge and tends to be lower

in teachers who have taken fewer content courses or who are teaching outside of their main

subject (Mizzi, 2013; Ross, Cousins, Gadalla, & Hannay, 1999; Swackhamer, Koellner, Basile,

& Kimbrough, 2009).

Another area of focus for this literature review was the methods used to study PCK. A

variety of methods were mentioned in the review articles including tests, questionnaires,

interviews, lesson observations, meeting observations, document analysis, conversation analysis,

and concept mapping. Within mathematics education research, large-scale studies of PCK tend to

use tests for study instruments while small-scale studies tend to use qualitative methods

(Depaepe et al., 2013). Goldsmith, Doeer, and Lewis (2014) cautioned against the overreliance

on self-reported data of instructional practices because there may be differences between the

ways teachers and researchers perceive practices. Lastly, through a review of PCK studies

conducted in multiple countries, Blömeke and Delaney (2012) shed light on the influence of

www.manaraa.com

35

language and culture on the development of PCK frameworks, assessments of teaching

knowledge, and the results obtained when using these tools in different locales. First, they argued

that since teaching is a cultural activity that varies from country to country, PCK frameworks and

assessments may also be culture specific and bias towards the practices and views of teaching

dominant in the countries within which they were developed. As an example, Blömeke and

Delaney highlighted a study of Indonesian teachers’ performance on the US-based MKT which

showed lower performance on geometry items due in part to differences in how shapes are

classified in each country. Second, there was empirical evidence that, in some countries, teachers

whose mother tongue matched the language of their training program performed better on

measures of content knowledge and PCK than teachers who had a different mother tongue.

Work conducted over the past four decades has advanced our understanding of the types

of knowledge that are unique to teaching and researchers are still working towards a richer

understanding of how teacher knowledge develops over career stages. However, “comprehension

alone is not sufficient. The usefulness of such knowledge lies in its value for judgment and

action” (Shulman, 1987, p. 14). So, recently there has been renewed interest in understanding

how PCK relates to the practices of teaching. Aside from what teachers know and how they use

that knowledge, studies within this domain have also emphasized the role that beliefs and

efficacy play in teacher learning. Lastly, while a variety of methods exist to explore PCK,

researchers need to attend to possible limitations of self-reported data and cultural biases

embedded in their instruments.

Prior CSER Reviews. This literature review serves to summarize the knowledge base of

CS teacher learning produced by the CSER community. Earlier reviews from this field can help

www.manaraa.com

36

to contextualize the PCK studies described in the following sections. Here I discuss two surveys

that provide landscapes of the field, three methodological reviews, and two surveys related to CS

teacher preparation.

Landscape surveys. In 2001, Holmboe, McIver, and George (2001) conducted a review of CSER

from 1976 to 2000. They identified six types of projects prominent in CSER: ideas for new

instructional methods, experience stories from practitioners, discussion of theory, computer

aided systems, expert-novice studies, and empirical studies focused on how learners understand

programming. One deficiency they identified in CSER articles was limited references to

pedagogical theory or prior related work. They also noted a preponderance of papers that

provided reflections from computer scientists on their teaching and suggested this was partly

explained by a lack of researchers in the community dedicated specifically to CSER. The authors

encouraged more empirical research that draws on existing educational theories and borrows

methods from other disciplines. Lastly, the authors argued that CSER was still forming into its

own discipline and that it was “important to keep some common ground in order to achieve a

feeling of identity and belonging within the field. The common ground outlined in the present

paper is…the facilitation of pedagogical content knowledge for practitioners” (Holmboe et al.,

2001, p. 6).

A few years later, Fincher and Petre (2004a) edited Computer Science Education, a

fourteen chapter book providing a landscape of the field and guidance on conducting CSER.

They portrayed CSER as a nascent field still developing its own knowledge base and struggling

to form an identity from amongst the diverse backgrounds scholars bring from other fields like

education, psychology, and computer science. Like Holmboe et al. (2001), Fincher and Petre

www.manaraa.com

37

noted that most CSER papers were high in evidence but low in theory. They also categorized

existing CSER efforts, but with a focus on motivations behind the work. Their classification

scheme identified three CSER areas which overlap with four categories presented in Holmboe et

al. (2001): student understanding; animations of algorithms, visualizations of machine processes,

and simulation systems; and teaching methods. They highlighted seven additional areas

motivating CSER including: assessment, educational technology, the transfer of professional

practice into the classroom, the incorporation of new development and new technologies,

transferring to remote teaching, student recruitment and retention, and the construction of the

discipline. Although CSER stems from other disciplines, the authors proposed that it can be

distinguished as its own field by focusing future research on questions uniquely relevant to

computer science education such as “does student understanding of programming concepts differ

based on the first programming language learned?”

These landscape surveys present CSER as a budding research field influenced by the

backgrounds of a heterogeneous group of researchers coming from different disciplines where

education research may not be their primary or sole focus. A lot of attention has been given

towards students, tools for learning, and teaching methods, but not much research has focused on

CS teachers as learners. In addition to strengthening the rigor of CSER, the field needs to attend

more to building on theories of learning and pedagogy and to focusing on the aspects of

education research that are unique to the discipline of CS.

Methodological reviews. Carbone & Kaasbøll (1998) conducted a review of 31 articles

published in the March 1996 issue of the SIGCSE Bulletin and in the Communications of the

ACM between 1992 and 1997. The particular SIGCSE Bulletin reviewed by the authors

www.manaraa.com

38

contained proceedings from the twenty-seventh SIGCSE symposium. The goal of their review

was to identify methods used in evaluating novel strategies for teaching difficult CS topics. Six

evaluation methods were identified: student questionnaires, student exam scores, controlled

experiments, phenomenographic interviews, teacher descriptions of their own teaching, and

mixed methods. Most articles (n = 23) focused on teacher descriptions, which the authors

attributed to limited time for teachers to systematically evaluate their teaching while also

delivering their courses. While the articles covered a range of computing topics difficult for

students, algorithm analysis and object-oriented programming were most common. The authors

recommended instructors improve their teaching evaluation by employing low-road solutions

that require few resources (e.g., peer observation, class interaction diagrams, tutor feedback),

multiple data sources, and iterative development.

Nearly a decade later, Berglund, Daniels, and Pears (2006) conducted a methodological

review of qualitative CSER projects from 1992 to 2005. The authors focused on qualitative

research to increase awareness of various methods that could be used by the CSER community,

which had largely relied on quantitative approaches. The authors did not discuss the procedure

used to identify articles, but they described 22 pedagogically anchored qualitative research

studies that focused both on what students learn and how learning occurs. The studies appeared

to focus exclusively on students as learners and not on teachers as learners. Studies were grouped

into one of five research traditions: Vygotskian (n=4), phenomenography (n=5), constructivism

(n=6), critical inquiry (n=4), and multi-faceted approaches (n=3). The authors noted how few

qualitative CSER projects existed and encouraged more work in this area.

www.manaraa.com

39

Randolph, Julnes, Sutinen, and Lehman (2008) used a content analysis approach to review the

methodological properties of 352 articles published between 2000 and 2005 in eight major CSER

publications. They found most articles came from conference proceedings, were written by first

authors affiliated with American or Canadian institutions, focused on ways to organize

computing courses, and included tertiary students in first-year courses as participants. In articles

that included participants, experimental methods were most commonly used and the one-group,

posttest-only design was the most commonly used research design. Questionnaires were used

most frequently to measure outcomes of interest; attitudes and achievement were the most

frequently measured outcomes. The authors acknowledged that given their backgrounds in

quantitative educational research, their review focused more deeply on articles employing

quantitative methods and less on qualitative studies. They cautioned researchers against relying

solely on self-reported participant measures and they encouraged authors to include details about

the reliability and validity of their study measures. The authors concluded by saying the CSER

community has generated a wealth of research hypotheses that are based on anecdotal evidence

and poorly designed studies which may lead the field to develop a weak knowledge base that is

not empirically verified.

The resounding takeaway from these three reviews is that the CSER community needs to

increase the methodological rigor of its studies. While experience reports from teachers and

questionnaires collected from students can help us begin to understand CS learning and teaching,

we should be cautious of relying only on self-report data to develop the CSER knowledge base.

Lastly, by relying mostly on quantitative methods, the CSER community is missing out on the

www.manaraa.com

40

benefits of qualitative methods which include strategies for exploring new and understudied

phenomena.

Teacher preparation reviews. The remaining articles discussed in this section focus

specifically on teacher preparation, a critical component to improving CS education. Almost

concurrent with the arrival of CS in high schools came concern about the shortage and

unpreparedness of teachers. Unfortunately, problems with teacher availability and preparedness

persist. Consider these nearly identical quotes published 29 years apart:

The shortage of teachers in computer science stem from two sources. First, there is a

definite lack of adequate teacher training programs…A second source of the teacher

shortage problem is financial in nature. The relatively low pay (compared to that of

industrial computer scientists) of secondary school teachers make it very difficult to

retain those competent in computer science. (Poirot, 1979, p. 101)

At present, all evidence points to a crisis in computer science education at the high school

level…factors that contribute to this situation, [include]: a shortage of professional

development opportunities that would allow teachers to develop and keep their technical

and pedagogical skills current [and] the inability of school districts to attract or maintain

highly qualified teachers in the face of salary and benefit competition from industry.

(Ericson et al., 2008, p. 19)

The next two articles I summarize are reviews of work related to CS teacher preparation, one at

the pre-service level and one at the in-service level.

www.manaraa.com

41

Armoni (2011) reviewed pre-service CS teacher preparation dating back to the 1970s.

This review included a discussion of the nature of CS and its connection to mathematics and

science, pre-service teacher knowledge and development, the effects of teacher preparation

programs, and publications on CS teacher education. Armoni noted that most of the work in this

area was not empirical, but rather descriptive of training programs provided by CS teacher

educators. Prior to the 1990s, CS was often confused with computer-related activities (e.g.,

computer applications or computer literacy) and many teachers were expected to assume duties

as computer resource personnel and lab directors. Teacher training focused mainly on content

knowledge, specifically programming. Due to high demand for CS courses in high schools,

training was frequently targeted to in-service teachers from other disciplines who were assigned

to CS courses. While some training programs created during this era included methods courses,

there was a lack of material available to help guide the creation of these courses. Beginning in

the 1990s, discussions of CS teacher education began to include Shulman’s concept of

pedagogical content knowledge, but it was not sufficiently addressed in preparation programs.

Teacher educators also began describing the body of knowledge CS teachers needed. A few

empirical articles focused on the impact of teacher training, instructional strategies of effective

teachers, and teachers’ use of an animation system as a pedagogical tool. Armoni concluded her

review with several suggestions for pre-service CS training programs (see Table 2.1).

www.manaraa.com

42

More recently, Menekse (2015) reviewed 21 articles on CS professional development for

in-service teachers in the U.S. published between 2004 and 2014. By focusing on reports from

journals and conference proceedings, the author acknowledged that the review excluded

information about professional development programs offered by non-academic institutions. The

21 programs Menekse surveyed were traditional, summer workshops with most offering one-

time encounters that lasted less than a week; no programs offered other forms of professional

development like coaching. Most programs received funding from either NSF or Google and

focused on training high school teachers. Many programs focused on incorporating

computational thinking into courses, increasing participants’ content knowledge, or broadening

participation in CS courses. The concepts commonly covered in the professional development

programs were algorithmic thinking, variables, conditions, loops, abstraction, and

decomposition; only eight programs focused on pedagogical content knowledge. Professional

Table 2.1

Armoni’s (2011) Recommendations for Pre-service CS Training
• Training programs should focus on all types of teacher knowledge, particularly content

knowledge, pedagogical knowledge, PCK, and curricular knowledge
• Content knowledge should be comparable to the core of a CS undergraduate curriculum,

emphasizing concepts more than specific technologies
• PCK should be included with examples; programs should revise PCK elements as new

research comes out
• Training programs should encourage a student-centered, constructivist view of education

that treats the teacher as a mediator and not a knowledge transmitter
• Given the changing nature of CS, teachers should be prepared to undertake in-service PD,

whether organized or independently
• Training programs should include field experiences that relate to other elements of the

training program
• Training programs should include a methods course that bridges different types of

teaching knowledge with use of concrete examples and connections to practice
• The nature of CS should be included in training so teachers can represent the discipline

accurately to colleagues and students

www.manaraa.com

43

development providers evaluated their programs primarily by surveying participants about their

interests and opinions of the success of the workshops. Menekse also compared the 21 programs

against the following six characteristics of effective professional development programs drawn

from the broader teacher education literature: 50 or more contact hours, support for classroom

implementation, focus on active learning methods, focus on PCK, collaboration with local

district or school, and evidence of student learning resulting from the PD. More than half of the

programs provided support for classroom implementation and a focus on active learning

methods. However, fewer programs included the other four characteristics of effective programs

and only one program incorporated all six characteristics.

These two reviews on the CS teacher preparation literature show that while CS teacher

learning opportunities have evolved over the past few decades, there are several areas where

these opportunities can be improved to better equip teachers with the necessary disciplinary and

pedagogical knowledge needed in CS classrooms. Similar to the landscape surveys and the

methodological reviews, research on teacher learning would benefit from more methodological

rigor and a greater focus on PCK specific to CS.

Summary. The seven review articles described above provide a portrait of the CSER

landscape and teacher training opportunities from the 1970s through today. These articles

suggest that although CSER is a relatively young area, there is a significant body of work

describing student learning and teaching in the field. The authors highlighted how much of the

existing CSER work is anecdotal and that the field requires more empirical studies to strengthen

its knowledge base. The articles also drew attention to the limited focus on pedagogical content

knowledge and qualitative methods within CSER. In the following sections, I turn my attention

www.manaraa.com

44

towards CSER articles related to CS PCK, methods for investigating CS PCK, and factors

influencing the development of this knowledge.

Conceptualizations of CS PCK. Seven articles within the dataset addressed the

conceptualization of CS PCK. Four of these articles reported on the same line of work produced

by the Competencies for Teaching Computer Science (KUI) research group, which I will

summarize together below. Most of the articles were published between 2004 and 2015; one

article was published in 1987. Researchers worked with educational materials and participants in

Germany, Israel, U.K., and U.S. Unlike the majority of CSER work summarized in the reviews

described in the previous section, all articles summarized here discussed the theories of learning

influencing their work. While all articles mentioned Shulman’s PCK framework and its

derivatives, several authors drew upon other theories related to teacher knowledge, pedagogical

reasoning, epistemological beliefs, and motivation. The conceptualizations presented in these

articles can be distinguished by the research approaches used to create them, which were either

inductive or abductive.

Baxter (1987) and Lapidot (2005) each used more inductive approaches in their

dissertation projects to arrive at conceptualizations of CS PCK and PCK development,

respectively. Baxter, a student of Shulman’s, conducted a case study of two experienced

secondary teachers in the U.S. to explore their content knowledge and PCK related to

programming in general and to the topics of loops and sorting. Both participants identified as

males and had over 19 years of high school teaching experience and at least three years of

experience teaching programming. Their main teaching assignments were programming courses

focused on the BASIC language. Each teacher participated in three interviews, two structured

www.manaraa.com

45

tasks (i.e., critique of a BASIC program, a word association task), and four weeks of classroom

observations spread across eight weeks. Through a cross-case analysis of this data, Baxter

arrived at four conclusions about PCK that extend beyond computer programming. First, content

knowledge and PCK may be more integrated in expert teachers than in beginning teachers, with

expert educators using teaching as an organizer of their content knowledge. This idea resembles

Ball, Thames, and Phelps’ (2008) MKT model of mathematics PCK which describes different

categories of content knowledge related to teaching. Second, cognitive styles (i.e., preferred,

routine ways of acquiring information) may influence how teachers attend to, store, and use their

content knowledge. Baxter cited Witkin and Goodenough’s description of field independence-

dependence as an example: “field independence [w]as the tendency to correctly determine the

upright in a deliberately misleading context; field dependency was the tendency to locate the

upright incorrectly” (Baxter, 1987, p. 154). Baxter noted, however, that prior research on

cognitive styles was problematic because the construct was underconceptualized and measures of

cognitive style ignored the role of content knowledge. She recommended that more theoretically-

based work be conducted to confirm her conclusion about the role that preferred ways of

thinking influenced knowledge development. Third, teachers’ goals for student learning seem

related to their instructional practices and may stem from their views of the role of education

(i.e., impart knowledge or develop problem solving skills) or their subject matter understanding.

Lastly, through interactions with students, teachers are able to observe student conceptions and

receive feedback on how well their instructional methods support student learning, all of which

supports their PCK development. Figure 2.1 displays Baxter’s conceptualization of teacher

www.manaraa.com

46

content knowledge and the ways in which cognitive styles influence how teachers attend to new

information before incorporating it into their PCK.

Figure 2.1. Baxter’s (1987, pp. 153, 157) conceptualizations of PCK and CK (left) and the links
between CK and cognitive styles (right).

Lapidot (2005) conducted a field study of 15 secondary teachers and pre-service teachers

in Israel across four years using the methods of observations, interviews, and document analysis.

Five pre-service teachers were analyzed more deeply during a practicum course. One in-service

secondary teacher was followed across one year of teaching functional programming. Another

in-service secondary teacher was followed across three years while teaching the first lesson on

recursion. Lapidot used the results of this analysis to create a four-stage content reasoning model

to explain how CS high school teachers learn, which was based off Shulman’s (1987) model of

pedagogical reasoning (see Figure 2.2). In the first stage, comprehension, teachers focus on

learning the content they need to teach. In the second stage, transformation, teachers focus on

ways of turning their content knowledge into instructional examples. During this stage, teachers

may identify gaps in their content knowledge and return to the first stage. In the third stage,

teaching, teachers focus on students and their understandings while they teach. In the final stage,

www.manaraa.com

47

reflection, teachers try to improve their practice by analyzing their own teaching and their

students’ understanding. Lapidot’s model shares similarities with the science teacher learning

progressions presented by Schneider and Plasman (2011). Lapidot also found that teacher

learning was influenced by cognitive, social, and affective factors.

Figure 2.2. Lapidot’s (2005) content reasoning model.

In contrast to the inductive approaches used by Baxter (1987) and Lapidot (2005), the

other authors used abductive approaches to first identify PCK components from extant literature

and pedagogical materials and then to confirm their models with data gathered from expert

teachers. KUI was a multi-institutional research project funded by the German government

between 2012 and 2015 with the goal of creating a competency model that could inform CS

teacher training. KUI produced four articles included in this review (Bender et al., 2015;

Hubwieser, Berges, et al., 2013; Hubwieser, Magenheim, Mühling, & Ruf, 2013; Margaritis et

al., 2015). They defined competencies as “performance dispositions to solve complex situations”

(Margaritis et al., 2015, p. 211). This group first created a system to categorize teacher education

curricula by reviewing literature on PCK, teacher education standards, prior conceptualizations

of PCK for CS, CSER publications, educational research in other disciplines, and textbooks on

CS pedagogy. The resultant categorical system consisted of three dimensions: (a) Fields of

www.manaraa.com

48

Pedagogical Operation which described three phases of the teaching processes that occur before,

during, and after lessons; (b) Aspects of Teaching and Learning which described 15 categories

related to other pedagogical components (i.e., subject and curriculum, teaching methods, learner

issues, teacher issues, and educational system issues); and (c) Non-cognitive Competencies

which described 17 categories related to social and communication skills, motivation and self-

regulation, and beliefs and attitudes. Interviews were used to refine their model and provide

descriptions of each dimension. Participants were presented with teaching scenarios related to

each phase of the teaching process and then asked questions about how they would respond to

the situation that were based on the aspects of teaching and learning dimension of the

categorization scheme. The following is an example of a scenario related to the planning phase

of the teaching process used by the KUI group to validate their framework:

After a few hours on object-oriented modeling, you now want to start with the topic

"Object Oriented Programming". You are planning that, after some time, your students

should know what classes and objects are and that they are able to program their first

small program. (Margaritis et al., 2015, p. 16)

After presenting the scenario to expert teachers, they were asked questions such as, “How would

you proceed to plan the lesson so that your students can actively acquire the learning content?”

or “What are the difficulties in relation to the planning of the lesson that can occur in this

situation?” (Margaritis et al., 2015, p. 16). Thirteen experienced secondary CS teachers and ten

CS teacher educators participated in the empirical validation of the model. Their work resulted in

a framework of CS PCK that includes concrete descriptions of teaching competencies related to

each framework category (see Figure 2.3).

www.manaraa.com

49

Woollard (2005) used an approach similar to the KUI group to develop a framework for

CS PCK based on data gathered from experienced teachers, existing curricular materials, and

extant literature. Woollard argued that since metaphor is embedded in the design of

computational tools (e.g., icons, window displays), it also plays an important role in the teaching

of computer science in the form of pedagogic metaphor. Pedagogic metaphors, such as secret

notes to represent the idea of encryption or a shopping checkout line to represent the idea of a

queue, were defined as “a literally untrue description of a concept or body of knowledge…a

description, in the form of words, actions, images or diagrams, of an element of teaching”

(Woollard, 2005, p. 197). Six data sets were analyzed to identify and categorize pedagogic

Figure 2.3. KUI’s theoretical framework of CS PCK (Bender et al., 2015).

metaphors: 19 teacher interviews, 32 journal articles related to PCK, 18 teaching resources, three

exams, 20 computing topics considered difficult to teach, and 20 computer metaphors Woollard

identified in earlier work. Using a grounded theory approach, Woollard categorized the

www.manaraa.com

50

metaphoric approaches appearing in the data set along two axes (see Figure 2.4). Along the first

axis, metaphors were either kinesthetic (i.e., concrete, based on devices and actions) or

theoretical (i.e., conceptual, not linked to physical artifacts or activities). Along the second axis,

metaphors were either traditional (i.e., common in the computing community) or novel (i.e.,

created by individuals in response to their teaching environments). An example of a kinesthetic,

traditional metaphor of recursion is Russian dolls. An example of a theoretical, novel metaphor

of recursion is a spiral turning. Woollard described the resultant PCK taxonomy as a tool to

identify various non-literal explanations of computing concepts that can be used to address

conceptual difficulties, isolated topics, learner misconceptions, and less interesting subject

matter.

Figure 2.4. Woollard’s (2005) framework of pedagogic metaphor.

Summary. The conceptualizations presented in this section provide different tools for

describing the components, processes, and mediators of CS PCK. The frameworks confirm PCK

research conducted in other fields by highlighting the relationship between content knowledge

and PCK and the role of enactment in supporting PCK development. This body of work also

adds to the CSER knowledge base by providing concrete examples of PCK within CS. While the

www.manaraa.com

51

authors hint at the developmental nature of PCK, three of the four frameworks were based on

evidence gathered from experienced computing educators which might not provide a

comprehensive view of PCK. As Baxter recommended:

Studies of teachers who have been misassigned to subjects that they are not prepared to

teach would enrich our understanding of the relationship between teacher content

knowledge and explanations. These misassigned teachers might present explanations that

are strikingly different from the explanations of knowledgeable teachers. (Baxter, 1987,

p. 161)

A potential drawback of relying on the knowledge of experienced teachers to create PCK models

is that it can lead to deficit views of the knowledge held by less experienced educators. Such

models, for example, might be used to identify what areas of teacher knowledge are missing or

underdeveloped in less experienced educators. Such models might also overlook components of

teacher knowledge that appear in novice or proficient educators but not in experienced educators.

As Schneider and Plasman concluded in their review of science PCK across teaching stages:

New teachers tended to have ideas that were similar to preservice teachers yet showed

some development. More experienced teachers…might have the same ideas as early

career teachers or they might have much more development. Leader teachers…were often

the most likely to have the most sophisticated ideas…Midcareer teachers, as well as

illustrating novice ideas and more developed ideas, also illustrated ideas on a different

overall path altogether. (Schneider & Plasman, 2011, p. 28)

Future work related to conceptualizing CS PCK could benefit from confirming existing models

with less experienced educators or using similar methods to develop models of novice CS PCK.

www.manaraa.com

52

Lastly, these conceptualizations of CS PCK were developed by scholars working within different

countries where variation in teaching cultures might lead to culture-specific PCK models

(Blömeke & Delaney, 2012). Using these models in diverse educational settings can also help to

confirm their suitability for multiple contexts and identify possible areas of refinement (e.g.,

Zendler, McClung, & Klaudt, 2015).

Investigations of CS PCK. In this section of the literature review I focus on the methods

used to study CS PCK. Following Depaepe et al. (2013), I summarize the research designs and

participant counts of the identified studies. I also describe their countries of origin, school level

of focus, teacher experience level, and time span to identify patterns in the types of studies that

have been conducted. After summarizing the research designs, I provide detailed information on

the instruments used within these studies.

Sixteen articles within the dataset were investigations of CS PCK and they are

summarized in Table 2.2. The studies in this dataset were conducted mostly in Germany, Israel,

or the U.S. Most articles reporting their school level focus concentrated exclusively on secondary

education. Two articles also included a comparison to either primary education or tertiary

education. There was a greater focus on in-service teachers than on pre-service teachers. Most

studies collected data at one time point, but a handful of studies were longitudinal spanning 1 to

4 years. It is important to keep in mind that some articles reported on one aspect of a larger

project which may have had a longer time span. Participant counts ranged from 2 to 1,127; one

study did not include participants. Five types of data collection methods were used: interviews,

classroom observations, meeting observations of teachers collaborating on an activity, a task

(e.g., questionnaire, assessment), and document analysis. Similar to Depaepe et al.’s (2013)

www.manaraa.com

53

summary of studies on mathematics PCK, larger studies of CS PCK relied only on tasks while

smaller studies tended to employ multiple data collection methods. Smaller studies were more

prevalent than larger studies, which is likely explained by the fact that CS PCK is an

understudied topic that needs to be explored more than validated at this point in time.

While the majority of researchers developed their own instruments to investigate CS

PCK, a few scholars incorporated existing instruments into their studies. Four projects (Buchholz

et al., 2013; Grgurina et al., 2014; Saeli et al., 2012, 2010) used CoRe, an instrument created by

Loughran, Mulhall, and Berry (2004) to study science PCK. With the CoRe, groups of teachers

Table 2.2

Research methods used to study CS PCK
Studies Country School Level Teacher Level Time Span n I CO MO T DA
Baxter (1987) U.S.A. Secondary In-service 8 weeks 2 X X X
Buchholz et al.
(2013)

Germany Not given Pre-service 1 year 14 X

Giannakos et al.
(2014)

Greece Secondary In-service Hours 1127 X

Grgurina et al. (2014) Netherlands Secondary In-service Hours 10 X
Griffin et al. (2016) U.S.A. Secondary Pre-service

In-service
1 year 2 X X X

Lapidot (2005) Israel Secondary Pre-service
In-service

4 years 15 X X X

Liberman et al.
(2012)

Israel Secondary In-service 2 years 3 X X X

Ohrndorf & Schubert
(2013, 2014)

Germany Not given Pre-service Hours 12 X

Ragonis & Hazzan
(2009)

Israel Secondary Pre-service1 1 year 11 X X

Saeli et al. (2012) Netherlands Secondary N/A N/A N/A X
Saeli et al. (2010) Multiple Secondary In-service Hours 30 X
Schulte (2008) Germany Secondary Pre-service Hours 10 X
Snelbecker & Bhote
(1995)

U.S.A. Primary
Secondary

In-service Hours 239 X

Zendler & Hubwieser
(2013), Zendler &
Klaudt (2012)

Germany Secondary
Tertiary

In-service Hours 240 X

1One in-service teacher participated in this study, but the project was geared towards pre-service teachers.
Abbreviations in table: I = Interview; CO = Classroom observation; MO = Meeting observation; T = Task, test, or
questionnaire; DA = Document analysis

www.manaraa.com

54

discuss eight prompts designed to elicit aspects of content knowledge and student understanding

related to a big idea in a domain (e.g., matter is made up of particles). Some scholars

administered the CoRe as intended with groups of teachers while others converted it into a

questionnaire completed by individuals. Another project (Giannakos et al., 2014) used a subset

of Schmidt et al.’s (2009) TPACK assessment. The TPACK assessment asks users to rate their

level of agreement with 45 items related to their technology knowledge (e.g., I can learn

technology easily), content knowledge (e.g., I have sufficient knowledge about mathematics),

pedagogical knowledge (e.g., I know how to assess student performance in a classroom), PCK

(e.g., I can select effective teaching approaches to guide student thinking and learning in

mathematics), technological content knowledge (e.g., I know about technologies that I can use

for understanding and doing mathematics), technological pedagogical knowledge (e.g., I can

choose technologies that enhance the teaching approaches for a lesson), and their technological

pedagogical content knowledge (e.g., I can teach lessons that appropriately combine

mathematics, technologies, and teaching approaches). Snelbecker and Bhote (1995) administered

two assessments to measure teachers’ aptitudes and attitudes towards computing: CALIP and

CAS. The Computer Aptitude, Literacy, and Interest Profile (CALIP) contains six subscales to

measure total aptitude, interest, and literacy (Poplin, Drew, & Gable, 1984). The Computer

Attitude Scale (CAS) contains 40 items across four subscales that measure computer anxiety,

computer liking, computer confidence, and computer usefulness (Loyd & Gressard, 1984). One

advantage of using existing instruments is that they will likely provide good measures of the

variables of interest because they have been validated. Another benefit of using existing

instruments is that there is potential to compare data gathered from CS teachers with data

www.manaraa.com

55

gathered from teachers of other disciplines and identify unique elements of CS teaching. One

possible disadvantage to using widely available instruments to measure teacher knowledge is that

they may not capture factors specific to computing. In the following paragraphs, I describe the

other instruments created by researchers to study CS PCK.

Interviews. New interview protocols were developed for five of the studies. Ragonis and

Hazzan (2009) mentioned collecting interview data but did not provide details on their interview

prompts. Lapidot (2005) used interviews to understand participants’ content knowledge,

instructional plans, the impact of lessons on their knowledge, and any issues they faced. Each

interview related to a specific lesson observed by Lapidot. Both Baxter (1987) and Griffin,

Pirmann, and Gray (2016) dedicated some of their interviews to gathering background

information about participating teachers, their students, and schools. Baxter (1987) also created

two additional interview protocols to use in her study. The first interview asked participants to

review a list of CS topics and rate the emphasis of each topic in their courses, rate the level of

difficulty for students, and describe instructional strategies used for each topic. At the end of the

interview participants were asked to rate five approaches to program development indicating the

importance of each approach in their teaching. Baxter’s second interview consisted of seven

questions related to teaching the topic of loops (see Figure 2.5). Some of these items (e.g., 2, 3,

7) bear a resemblance to several items on the CoRe. Griffin et al.’s (2016) interview protocol

focused mainly on teaching background and school context, but they also included prompts

related to changes in teaching practices, ways of managing students’ social interactions, teaching

philosophies, and future course plans. Lastly, Liberman, Kolikant, and Beeri (2012) focused on

www.manaraa.com

56

eliciting descriptions of teaching episodes, instructional resources, and the pedagogical

considerations made when selecting representations.

Figure 2.5. Baxter’s (1987) interview protocol on teaching loops.

Classroom Observations. Classroom observations were mentioned in four of the articles:

Baxter (1987), Griffin et al. (2016), Liberman et al. (2012), and Lapidot (2005). Little detail was

provided on the structure of these observations, with most authors mentioning the use of

fieldnotes. Griffin et al. (2016) described their observations as focusing on the initial state of the

classroom, instructional activities, and social interactions.

Meeting observations. Schulte (2008) designed an observational study of teachers

planning a lesson on bubble sort, an algorithm for arranging a series of numbers in order. Non-

participant observers took notes as each group discussed how to plan lessons, analyzed a

function to implement Bubble sort, brainstormed ideas on delivering lessons, and developed a

lesson plan. Observation notes focused on ideas produced by participants, whether ideas were

backed with evidence, and communication difficulties.

Tasks. New tasks were designed for six of the articles. Liberman et al. (2012) briefly

mentioned the use of a subject matter knowledge assessment but they did not provide details on

its contents. Baxter (1987) made use of a word association task where participants were given a

www.manaraa.com

57

programming term (e.g., variable, conditional) and asked to say the first thing that came to their

minds. Similar to Schulte’s (2008) meeting observation, Baxter also asked teachers to review and

critique a computer program. Ohrndorf and Schubert (2013, 2014) created a set of tasks that

presented teachers with instructional scenarios and asked them to explain possible student

responses and misconceptions (see Figure 2.6). Ragonis and Hazzan (2009) asked participants to

Figure 2.6. Sample item from Ohrndorf and Schubert’s PCK task (2013).

complete multiple tasks including feedback worksheets after each tutoring session, evaluation

questionnaires completed at the end of the semester, and various homework assignments. The

first three items of their feedback worksheets share similarities with the CoRe in their focus on

student difficulties and ways of addressing those difficulties (see Figure 2.7). Lastly, Zendler and

colleagues (Zendler & Hubwieser, 2013; Zendler & Klaudt, 2012) presented participants with a

grid of 15 CS concepts (e.g., algorithm, data) by 16 CS process concepts (e.g., classifying,

ordering) and asked them to rank the relevance of each process for each concept. Concepts

included on the grid were identified through prior surveys of CS professors.

www.manaraa.com

58

Figure 2.7. Ragonis and Hazzan (2009) Tutoring Session Feedback Worksheet.

Document analysis. Three articles included document analysis in their study of CS PCK.

Griffin et al. (2016) reviewed materials from the CS Principles Framework to interpret teachers’

implementation of the framework. Lapidot (2005) reviewed participants’ lesson plans and

curricular materials. Document analysis was the primary method used by Saeli et al. (2012) who

analyzed the PCK information contained within the three Dutch textbooks available for CS

instruction in the Netherlands. The authors used the CoRe to create an instrument for evaluating

these materials.

Summary. CSER scholars employed a variety of methods to investigate PCK. Many of these

methods were not unique to the field of computing, instead, they were contextualized to CS

environments (e.g., asking questions about student misconceptions that could easily be ported to

www.manaraa.com

59

another discipline by replacing ‘computer science’ with ‘mathematics’). Multiple investigators

developed their own tools to examine PCK, which often shared similarities with existing

instruments. Future studies may benefit from adapting existing PCK instruments to their specific

CS contexts as this would allow for greater comparison across studies and reduce the effort

needed to develop robust measures. At the same time, Fincher, Tenenberg, and Robins (2011)

argued that more methods specific to CS are needed to advanced CSER as its own discipline.

The aforementioned tasks related to analyzing code, student work, or the relationship between

CS concepts provide good examples of such approaches. Future work may attend to developing

additional measures that focus on unique aspects of CS teaching.

Factors Influencing CS PCK Development. In the previous sections of this chapter, I

examined how PCK is conceptualized and methods researchers used to study teacher knowledge.

Another goal of this literature review was to identify factors influencing the development of

teacher knowledge that should be considered when investigating PCK. This section is not a

summary of components common to CS teacher learning opportunities. Rather, my focus is on

the personal and contextual elements that play a role in what teachers absorb from their learning

opportunities.

Nine articles within the dataset described factors influencing CS PCK development. Two

of these articles discussed the same line of work produced by the Exploring Computer Science

(ECS) group at UCLA. The nine articles, written between 2011 and 2016, represent work

conducted in the U.S. (5), Greece (2), Argentina (1), and multiple countries (1). Eight articles

focused on secondary teachers and one article focused on both primary and secondary teachers.

Information on influential PCK factors were gathered by asking teachers through interviews and

www.manaraa.com

60

surveys what best supported them during their learning experiences. Some of this work was also

supplemented with observation data and log file data. While each article had a primary focal area

(see Table 2.3), I noticed similar ideas across the papers related to the dynamic nature of the CS

field, teachers’ working environments, need for community, beliefs and identity, and classroom

implementation. Insights related to these ideas are summarized below.

Table 2.3

Articles describing factors influencing CS PCK
Article Primary Focus Country School Level
Dagdilelis & Xinogalos (2012) Professional Development Greece Secondary
Ericson, Rogers, Parker, Morrison, &
Guzdial (2016)

Professional Development Multiple Secondary

Goode, Margolis, & Chapman (2014)
Ryoo, Goode, & Margolis (2015)

Professional Learning Community USA Secondary

Kordaki (2013) Beliefs Greece Secondary
Leake & Lewis (2016) Professional Learning Community USA Secondary
Guzdial (2011) Review USA Secondary
Martinez, Gomez, Moresi, & Benotti
(2016)

Professional Development Argentina Primary,
Secondary

Ni & Guzdial (2012) Identity USA Secondary

Dynamic discipline. The field of CS is constantly advancing. In response to these

changes, CS educators often need to incorporate new material, programming languages, and

paradigms into their courses. For example, in just twenty years, the College Board switched the

language of instruction for the AP CS A course from Pascal, to C++, and then to Java (Roberts,

2004). In the most recent survey administered by the Computer Science Teacher Association

(CSTA) to learn about the state of CS education in America, respondents reported that rapidly

changing technology was one of their greatest challenges to teaching CS (CSTA, 2015). For

some teachers, this creates a need for continual learning in order to keep one’s knowledge and

skills updated (Ni & Guzdial, 2012) and can lead to feelings of inefficacy (Kordaki, 2013).

Teachers sometimes find it difficult to locate resources to support their practice and try to

www.manaraa.com

61

identify materials from websites of other educators working in similar teaching contexts (Leake

& Lewis, 2016). For other teachers, the dynamic nature of CS makes sharing practices with

colleagues during PD opportunities a productive activity (Ryoo et al., 2015).

Working environments. The realities of teachers’ working environments also influence

learning opportunities. Three articles highlighted how teaching workloads limited the amount of

time educators could devote to participating in communities or learning CS content, particularly

through systems not designed specifically for educators (Ericson et al., 2016; Guzdial, 2011;

Leake & Lewis, 2016). For example, in a study of interactive electronic books designed to

support high school CS teachers new to programming, Ericson et al. (2016) found teachers

tended to work through the books in short spurts of time and they recommended designing

modules that could be completed in 20 minutes. Leake and Lewis’ (2016) interviews with

secondary teachers showed that teachers found participation in online teaching communities as

distracting from their primary goal of helping students. Factors at the school system level also

influenced opportunities to learn. In some situations, teaching courses influential to college

admissions restricted educators’ choice of instructional methods (Dagdilelis & Xinogalos, 2012;

Kordaki, 2013), limiting their use of new approaches or technologies. The status of CS as an

elective course led some teachers in Greece to use direct teaching methods and drill and practice

techniques to maintain student attention (Kordaki, 2013). In the U.S., this may also be an issue

because CS is often relegated to the periphery of secondary instruction while courses that satisfy

college entrance requirements and align with standardized testing are prioritized. Only twenty-

six states and the District of Columbia allow CS courses to fulfill high school math or science

www.manaraa.com

62

graduation requirements (“Where computer science counts,” n.d.) and only 30% of teachers and

administrators report prioritizing CS in their districts (Google & Gallup, 2015).

Community. Professional learning communities also play a role in supporting CS teacher

knowledge development. While CS teachers have opportunities to connect and exchange

information with peers at public gatherings like conferences (e.g., Garcia, Franke, Hoeppner, &

Paley, 2014), they are often the only CS teachers at their schools. This isolation makes it difficult

for them to interact with other CS educators on a regular basis and discuss issues of practice (Ni

& Guzdial, 2012). ECS professional development providers designed their program specifically

to address this issue of isolation. Their multi-year professional development program brought

together CS educators from different schools to learn about inquiry-based and equity-based

practices used in the ECS curriculum. Surveys collected from participants over three years

showed that the community of colleagues was the most impactful PD component for ECS

teachers’ professional growth and a source of new pedagogical knowledge (Goode et al., 2014;

Ryoo et al., 2015).

Beliefs and identity. Ni and Guzdial (2012) argued that a teacher’s sense of identity

influenced how one teaches, how one develops as a teacher, and one’s commitment to a

secondary CS teaching career. They interviewed nine teachers with CS course assignments to

gain insight into CS teaching identities. Teachers identifying as CS teachers understood the

scope of the field, saw CS as valuable for students, wanted to keep updated with changes in CS,

and wanted to connect with colleagues. Participants seeing themselves as both a CS teacher and a

teacher of another discipline would incorporate content from their other discipline into CS

courses and desired to connect with likeminded CS teachers. Teachers identifying only as

www.manaraa.com

63

business teachers struggled to distinguish computer applications from CS, did not want to pursue

further learning or peer collaboration, and did not see a need for their schools to offer more CS

courses. Kordaki (2013) discovered a similar range of ideas amongst twenty-five CS teachers in

Greece. She also noticed some patterns between teachers’ beliefs, motivations, and teaching

practices. Teachers employing direct teaching strategies with minimal student involvement (e.g.,

reading textbooks aloud) were extrinsically motivated to pursue their careers because of the

advantages of a teaching career (e.g., job security, work-life balance). Teachers who did not

teach and simply occupied students time (e.g., allowing them to surf the internet) had low

expectations for students such as becoming familiar with Microsoft applications. Lastly, teachers

who used project work and encouraged problem solving and critical thinking in their courses

wanted to become more effective teachers and were intrinsically motivated to enter the

profession because they loved teaching.

Classroom implementation. A few articles discussed observations of CS teaching

practices that can inform our understanding of how teachers make use of their PCK. In

discussing their prior work that led to the design of electronic books for CS teachers, Ericson et

al. (2016) described how expert teachers often spent time debugging student code and that they

rarely wrote their own code. In an evaluation of a professional development program for CS

educators in Argentina, Martinez et al. (2016) found that nearly half of participants used the

same strategies presented and practiced in the workshop, but that less than a third of participants

used strategies that were only presented. Martinez et al. also found that in attempting to recreate

inquiry based tasks in their classrooms, teachers lacking in content knowledge introduced tasks

that did not focus specifically on CS.

www.manaraa.com

64

Summary. PCK does not exist or operate in isolation. The work summarized in this

section demonstrates that various personal and contextual factors influence how teachers learn,

what teachers can learn, and the ways teachers implement their knowledge in practice. We

cannot assume that teachers will simply increase their PCK if provided with materials describing

common student misconceptions, examples of instructional strategies, or tutorials to learn CS

content. The dynamic nature of CS requires teachers to be lifelong learners and learning

opportunities need to account for the limited time teachers have for professional development.

Camaraderie goes a long way to help teachers develop a sense of identity as CS educators,

persist in their careers, and learn about alternative teaching strategies. Beliefs about teaching and

learning can be reflected in classroom teaching practices, with some beliefs more productive than

others in supporting teacher learning. Also, CS teachers work differently than professional

software engineers, so we cannot expect them to learn in ways shown useful for professional

computer scientists. Lastly, external factors at the student and administrative level play a hand in

the decisions teachers make. Thus, we must consider the sociocultural contexts within which

teachers work when investigating how they develop PCK. This attention to factors beyond

teacher cognition is not unlike ecological models of human development that consider cultural

socialization and identity development in the learning process (e.g., Lee, Spencer, & Harpalani,

2003).

2.3 Computer Science Learning and Teaching

Given that PCK is domain specific, what are the unique features of CS related to

acquiring teacher knowledge of the discipline? To address this question, I provide an overview

of CS learning and teaching by discussing (a) the nature of the discipline, (b) CS in K-12

www.manaraa.com

65

American classrooms, and (c) possible challenges for teachers transitioning into CS from other

disciplines.

2.3.1. Nature of CS

What is computer science? What processes and tools can we use to learn computer

science? These questions relate to epistemology, or the ideas people hold about the nature and

acquisition of knowledge. Chinn, Buckland, and Samarapungavan (2011) described epistemic

cognitions as relating to (a) inquiry goals and the worth associated with achieving goals (i.e.,

epistemic aims and values); (b) how knowledge is structured (e.g., knowledge as deterministic

versus stochastic); (c) the origins of knowledge, the reasons for one’s beliefs, and the attitudes

taken towards ideas; (d) dispositions that support or hinder epistemic aims; and (e) processes for

achieving epistemic aims. They argue that these cognitions are important to consider because

they relate to how people approach learning and teaching. As an example, “a student who aims

for explanations in a history class may not be satisfied just to learn the tragic sequence of events

of the Great Depression; the student may seek deeper economic explanations of why it began and

why it lasted so long” (Chinn et al., 2011, p. 147). Furthermore, epistemic cognitions vary across

disciplines. For example, while scientists aim to make the most accurate claims possible by

building theoretical models of the natural world based on data, those interpreting literary texts

aim to explore the human experience by attending to the language content and form of texts

which are open to multiple interpretations (Lee, Goldman, Levine, & Magliano, 2016). When

investigating learning and teaching, we cannot expect an individual to necessarily bring the same

epistemic cognitions into different disciplines.

www.manaraa.com

66

Inside the classroom, the dominant epistemic cognitions of authentic disciplinary practice

are sometimes not reflected in curricula, leaving students with a limited view of the domains they

study. Chinn and Malhotra (2002) demonstrated that activities in science textbooks designed for

middle school and upper elementary lacked many of the cognitive processes used in authentic

science practice and assumed a conflicting epistemology where “scientific reasoning is viewed as

simple, certain, algorithmic, and focused at a surface level of observation” (2002, p. 190). To

address this, some education researchers are using epistemic cognition as a guide in designing

instructional frameworks for disciplinary reading that incorporate the inquiry and argumentation

processes of authentic disciplinary practice (Goldman et al., 2016). Lastly, teachers’ epistemic

cognitions are reflected in their instructional decisions (e.g., minimizing required curricular

material they believe do not support disciplinary thinking) and in the ways in which they engage

with content in class (e.g., how they respond to students using alternative methods), which may

convey ideas to students about the preferred epistemic cognitions to assume for a given

discipline (Buehl & Fives, 2016). Teachers and students entering CS classrooms for the first time

may confront disciplinary epistemologies that differ from their known school experiences. These

differences may present challenges as they adjust to new ways of learning. In the following

paragraphs, I address the epistemologies undergirding the CS discipline and K-12 CS education.

In the mid-1980s, nearly forty years after the start of modern CS, the Association for

Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE)

appointed the Task Force on the Core of Computer Science to create a framework and teaching

paradigm for CS. The task force, viewing no need to distinguish the core of CS from the core of

computer engineering broadened their scope to computing and offered the following definition:

www.manaraa.com

67

“The discipline of computing is the systematic study of algorithmic processes that describe and

transform information: their theory, analysis, design, efficiency, implementation, and

application. The fundamental question underlying all computing is, ‘What can be (efficiently)

automated’?” (Denning et al., 1989, p. 12). More recently, Denning (2003, see Table 2.4)

described the discipline as consisting of five mechanics that govern the operation of

computations, five conventions for designing computation, five standard practices for building

and deploying computing systems, and thirty core technologies (e.g., artificial intelligence, data

structures, graphics, natural language processing, operating systems).

Three paradigms dominate the discipline that differ in their aims, processes, and

epistemologies: a rationalist approach, a technocratic approach, and a scientific approach (Eden,

2007; Tedre & Sutinen, 2008). The rationalist approach, prominent in subfields such as

theoretical CS, views CS as a branch of mathematics, aims for coherent theoretical structures and

systems, and seeks a priori knowledge of program correctness through deductive reasoning. The

technocratic approach, prominent in subfields such as software design, views CS as a branch of

engineering, aims for useful, efficient, and reliable systems, and seeks a posterior knowledge of

program reliability through empirical methods. The scientific approach, prominent in subfields

such as artificial intelligence, views CS as a natural science, aims to investigate and explain

phenomena, and seeks to explain, model, and predict the behavior of programs using both

deductive and empirical methods.

As mentioned above, disciplines are sometimes practiced differently in school settings.

Recent efforts such as the CSTA K-12 Computer Science Standards (Seehorn et al., 2016) and

the K-12 Computer Science Framework (“K–12 Computer Science Framework,” 2016) offer

www.manaraa.com

68

Table 2.4

Denning’s (2003) Great Principles of Computing

Area Components

Description

Mechanics Computation What can be computed; limits of computing

Communication Sending messages from one point to another

Coordination Multiple entities cooperating toward a single result

Automation Performing cognitive tasks by computer

Recollection Storing and retrieving information
Design Simplicity Various forms of abstraction and structure that overcome

the apparent complexity of the applications

Performance Predicting throughput, response time, bottlenecks,
capacity planning

Reliability Redundancy, recovery, checkpoint, integrity, system trust

Evolvability Adapting to changes in function and scale

Security Access control, secrecy, privacy, authentication, integrity,
safety

Practice Programming Using programming languages to build software systems
that meet specifications created in cooperation with the
users of those systems

Engineering
systems

Designing and constructing systems of software and
hardware components running on servers connected by
networks

Modeling and
validation

Building models of systems to make predictions about
their behavior under various conditions; and designing
experiments to validate algorithms and systems

Innovating Exercising leadership to design and bring about lasting
changes to the ways groups and communities operate

Applying: Working with practitioners in application domains to
produce computing systems that support their work

www.manaraa.com

69

insight into educators’ ideas of how CS curricula should be implemented in schools. The

frameworks describe five core concepts that capture major CS content areas, five crosscutting

concepts used across the core concepts, and seven core practices needed to make use of the

concepts (see Table 2.5).

Although structured differently, the K-12 frameworks touch on most elements presented

in Denning’s model. The K-12 frameworks do not appear to foreground the topics of automation

(i.e., deciding when and how to automate cognitive tasks) or evolvability (i.e., adapting to

changes in function and scale). In contrast to Denning’s model, the K-12 frameworks place more

emphasis on understanding the impacts of computing, collaborating with peers, and

communicating about computing. Also, with their focus on (a) creating and refining

computational artifacts and (b) developing and using abstractions, the K-12 frameworks appear

to support technocratic and scientific paradigms of CS and less so the rationalist paradigm that

views CS as a branch of mathematics. These differences might be explained by the K-12

frameworks’ focus on CS knowledge and skills beneficial to all students, not just those who plan

to pursue tertiary studies or careers in CS. While frameworks provide guidance on what to

include in curricula and when, they do not detail how core concepts and practices should be

implemented. In the next section I address different ways CS has been implemented in K-12

classrooms.

www.manaraa.com

70

Table 2.5

K-12 Computer Science Framework (“K–12 Computer Science Framework,” 2016; Seehorn et al.,

 Area Components Description
Core
Concepts

Computing systems The physical components (hardware) and instructions
(software) that make up a computing system communicate
and process information in digital form

Networks and the
internet

Networks connect computing devices to share information
and resources

Data and analysis Data is collected and stored so that it can be analyzed to
better understand the world and make more accurate
predictions

Algorithms and
programming

An algorithm is a sequence of steps designed to accomplish
a specific task. Algorithms are translated into programs, or
code, to provide instructions for computing devices.

Impacts of computing Computing influences culture and culture shapes how people
engage with and access computing

Crosscutting
Concepts

Abstraction The process, or its result, of reducing a process or set of
information to a set of important characteristics for
computational use

Systems relationship A systems perspective provides the opportunity to
decompose complex problems into parts that are easier to
understand, develop, fix, and maintain. General systems
principles include feedback, control, efficiency, modularity,
synthesis, emergence, and hierarchy

Human-computer
interaction

The study of how people interact with computers and to
what extent computing systems are or are not developed for
successful interaction with human beings

Privacy and security Secluding information and expressing it selectively;
safeguards surrounding information systems including
protection from theft or damage to hardware, software, and
the information in the systems

Communication and
coordination

The reliable exchange of information between autonomous
agents (communication) that cooperate toward common
outcomes that no agent could produce alone (coordination)

Practices Fostering an inclusive computing culture
Collaborating around computing
Recognizing and defining computational problems
Developing and using abstractions
Creating computational artifacts
Testing and refining computational artifacts
Communicating about computing

www.manaraa.com

71

2.3.2. Computing Education

Origins of Computing Education. The arrival of digital computers had a profound effect

on education. In discussing the educational implications of modern computers, Forsythe (1963)

predicted computing would be critical for technical and non-technical students alike and require

both new ways of teaching existing subject areas and a new academic discipline focused on

computer technology that he called computer science. Around that time, Goodlad, O’Toole, and

Tyler estimated approximately 300 American high schools were using computers for

instructional purposes (as cited in Korotkin, Darby, Jr., & Romashko, 1970, p. 34). During the

1970s, pioneers such as Seymour Papert and Alan Kay spearheaded research on the use of

computers for education with visionary ideas about the ways computing could transform learning

(Solomon, 1986). These efforts have had lasting effects on computing education.

Papert cautioned against using computers to simply replicate existing educational

practices and advocated for a more exploratory use of computers to introduce learners to

programming and computation, which he demonstrated with several activities involving the

Logo programming language (Papert & Solomon, 1971). Logo is an educational programming

language designed to support young learners and those without extensive knowledge of

mathematics (Feurzeig, Papert, Bloom, Grant, & Solomon, 1969). Due to widespread adoption of

microcomputers in the 1980s and the release of Papert’s book Mindstorms: Children, Computers,

and Powerful Ideas, Logo became more accessible, grew in popularity, and was even required in

many school curricula (Kahn, 2015). Influenced by the work of Papert, Kay envisioned a new

technological medium that could augment learning by allowing children to express ideas and

explore areas of interest (Kay, 1972). He brought the idea of personal, portable computing into

www.manaraa.com

72

the realm of education with Dynabook and the Smalltalk programming language (Kay &

Goldberg, 1977). Kay’s efforts led to the creation of the desktop user interface as well as the

visual programming environment Etoys (Guzdial, 2004).

Another important development in the expansion of computing education was the

emergence of Papert’s theory of constructionism. This perspective views learning as the

construction of knowledge that occurs through the creation, debugging, and sharing of artifacts

(Papert & Harel, 1991). Also important in this theory are learning cultures, or social contexts

that offer learners opportunities to interact with members of a community and develop

connections to the ideas they are learning (Kafai, 2006). Some of Papert’s students extended this

theory by highlighting the value of cultural identity expression and shared constructionist activity

for knowledge development (Hooper, 1996; Shaw, 1995). Papert’s Epistemology and Learning

Group further advanced computing education by taking up constructionist ideas in the design of

computer applications to support learning. For example, Harel and Papert (1990) described a

year-long project where constructionist ideas and the programming language LogoWriter were

used to allow fourth grade students to create their own instructional software to explain fractions.

As another example, microworlds, or open-ended exploratory computing environments, designed

to explore mathematical and scientific ideas resulted from the constructionist tradition (Brandes

& Wilensky, 1991; Edwards, 1998; Papert, 1972).

The efforts of Papert, Kay, and their contemporaries as well as constructionist ideas

continue to profoundly influence the computing education movement today. Their impact is

reflected in the numerous tools and initiatives derived from their work such as the educational

programming environment Scratch, the robotic construction kit Lego Mindstorms, and the One

www.manaraa.com

73

Laptop per Child initiative (Kahn, 2015). Although current computing education initiatives vary

widely across the globe, there are two main approaches used in their curricula: teaching CS as its

own subject and integrating computing into other disciplines (Ragonis, 2009). Although this

dissertation focuses on CS education, I provide a brief summary of both approaches in order to

situate my work within the larger computing education landscape.

Computer Science. Computer science entered American high schools over sixty years

ago. Buchman (1956) provided an early example of a course designed for high school seniors in

advanced mathematics that included (a) instruction on number systems, the history and

mechanics of computers, and programming; (b) lab exercises to design and implement a program

to compute a formula; and (c) a visit to a local science and technology company that used

automatic computers. As another example, researchers at Stanford University organized three

courses designed to introduce fundamental programming concepts through a computer-assisted

instruction platform to ninety workplace-bound high school students between 1968-1970 (Lorton

& Cole, 1981). The courses focused on three commonly used programming languages (i.e.,

Simper, (S)Logo – a variant of the Logo language, and BASIC). Since that time, CS education

has evolved in its reach, focus, and format. In the following paragraphs, I provide a glimpse of

the CS education landscape at the secondary level in the U.S. over the past five decades.

During the 1969-1970 academic year, Korotkin, Darby, and Romashko (1970) surveyed

12, 396 public secondary schools in the United States to learn about their use of computers and

found: approximately 13% of schools reported using computers for instructional purposes (e.g.,

problem solving and electronic data processing, guidance and counseling, gaming and

simulation, computer-assisted instruction, and management of instruction); computers were most

www.manaraa.com

74

frequently incorporated into math, science, data processing, and business education courses; and

the most commonly used programming languages were Fortran and BASIC. About ten years

later, the Johns Hopkins University Center for Social Organization of Schools (1983) reported

preliminary results of 990 survey responses collected from public, private, and parochial primary

and secondary schools in the United States during the 1982-1983 academic year. Their results

showed that, at the high school level, programming was the preferred computer instructional

activity and BASIC was the most popular language, with a minority of schools teaching Fortran,

Logo, or Pascal. It was during this decade that the College Board released its first Advanced

Placement exam for CS which used Pascal to test high school students’ understanding of CS

(Roberts, 2004). ACM also released the first edition of its secondary computer science

curriculum guide which included two courses focused on algorithms and problem-solving to

prepare students for CS studies in college, one course to introduce a broader audience of students

to programming, and a computer literacy course (Turner, 1985).

In the 1990s, the Strategic Directions in Computing Research Education Work Group, a

coalition of eighteen CS scholars, reported on issues in CS education across the grade span

which included the lack of a coherent, widely-used high school curriculum (Tucker, 1996).

Harvey (1991) described how the lack of an official high school CS curriculum led many

secondary CS courses to be strongly influenced by the existing AP CS course, which followed an

engineering paradigm of CS prevalent in colleges and appropriate for students preparing to enter

careers as professional programmers. Instead, he argued high school CS curricula should be

more exploratory, project-based, and driven by learners’ interest to encourage budding curiosity

in programming. Stephenson (2000), drawing on extant literature and survey results from

www.manaraa.com

75

teachers in five states, reported a decline in the number of college-bound students taking

programming courses compared to prior years and an increase in the use of object-oriented

programming languages (e.g., Java, C++) in schools. During this decade, ACM released its

second high school CS curricular guide which focused on seven topic areas (i.e., algorithms;

programming languages; operating systems and user support; computer architecture; social,

ethical, and professional context; computer applications; and advanced applications like artificial

intelligence or computational science) (Merritt et al., 1993). Also, the College Board switched

from using Pascal to using C++ on the AP CS exam (Roberts, 2004).

In the summer of 1999, an ACM task force met to discuss ways of improving K-12

education in science, mathematics, and computing (De Blasi, 1999) and later produced a four-

tiered curriculum model for CS (Tucker et al., 2003). From this committee, CSTA was formed

for the purposes of “supporting teachers and pursuing excellence in computing education for

students age 5-18 (K-12)” (Stephenson, 2005, p. 29). In 2004, just six years after the previous

programming language change, the College Board switched from using C++ to Java on the AP

CS exam, forcing teachers to learn another program language and leading many schools to

remove AP CS from the curriculum (Roberts, 2004). Many described the state of CS during this

decade as a crisis. According to the CSTA Curriculum Improvement Task Force, the crisis

manifested in a decrease of CS courses, enrollments, and levels of involvement from female and

minority students (Stephenson, Gal-Ezer, Haberman, & Verno, 2005).

Within the last seven years we have seen the advent of several initiatives to drastically

increase and improve CS opportunities in the U.S. at the national level (Astrachan, Cuny,

Stephenson, & Wilson, 2011) such as CS10K, an NSF-initiative to “develop effective new high

www.manaraa.com

76

school computing curricula and get it into 10,000 high schools taught by 10,000 well-prepared

teachers by 2016” (Cuny, 2012, p. 35). CSTA surveys high school computer science teachers

biennially to learn about the state of CS education in America. The most recent survey (CSTA,

2015) was administered in spring 2015 to 10,182 educators identified as CS, computer

programming, or AP CS teachers; 1,354 educators responded. Respondents reported their

schools offered introductory CS courses (89%), Computer Science Principles which is now

offered as an AP course (66%), AP CS A (78%), Code.org curricula (66%), and other courses

(88%). In introductory courses, the most commonly covered topics were game programming,

problem solving, and logic applications in information technology and information systems. The

most commonly used programming languages were Scratch, Python, and C++ or C#. The most

common other courses that were not AP courses or introductory courses included computer

graphics, web design, and networking. CS courses are offered under a variety of departments

including business (67%), technology (51%), science (42.8%), and math (15%); only 5% of

teachers reported their CS courses were offered within a computing department.

The CS education community is moving towards wide adoption of a few curricula and

curriculum frameworks including ECS, AP CS Principles, and AP CS A (Cuny, 2012, 2015).

ECS is a pre-AP CS course built around inquiry-based instruction and culturally relevant and

meaningful curriculum (Goode & Margolis, 2011). It includes six units that each conclude with a

unit project: human-computer interaction, problem solving, web design, introduction to

programming, robotics, and computing applications. The curriculum incorporates CS

pedagogical tools such as Scratch, Lego Mindstorms, NetLogo and CS Unplugged. AP CS

Principles is a new College Board course focused on seven big CS ideas and six computational

www.manaraa.com

77

practices which overlap greatly with the concepts and practices of the K-12 CS Framework

described above (Kick & Trees, 2015). During the course, students complete two performance

tasks: one where they investigate and report on a computing innovation and on where they create

and communicate about a program related to an area they find interesting. Programming is just

one component of the course and teachers are given the flexibility of selecting the programming

language they want to use with their classes. AP CS A focuses on problem solving and

introduces students to algorithms, data structures, and programming in the Java language (The

College Board, 2014). During the course, students complete at least 20 hours of structured labs

where they design, implement, and refine programming solutions. Some labs include a focus on

string processing, array manipulation, and object-oriented program design. As of 2015, ECS and

AP CS Principles were being used in more than 1,000 schools and AP CS A was offered in 4,

310 schools (Cuny, 2015; The College Board, 2015).

Computing in Other Disciplines. As mentioned above, another significant approach to

computing education in high schools is the integration of computing into other disciplines. Some

argue that training a sufficient number of teachers to meet the demand for CS as its own course is

an enormous task and advocate for the inclusion of computing in other disciplines (e.g.,

Wilensky, Brady, & Horn, 2014). Furthermore, computational approaches are becoming integral

to professional practice in STEM fields, providing another reason to integrate computing into

high school courses (Orton et al., 2016). Beyond considerations of feasibility and professional

preparation, the integration of computing into other courses is beneficial for learning because, in

the constructionist tradition, it provides students with computational tools with which they can

www.manaraa.com

78

better build, assess, and understand models of phenomena in their primary disciplines (e.g.,

Blikstein & Wilensky, 2009; Wilensky, 1999a; Wilkerson-Jerde & Wilensky, 2015).

Major advocates of this approach include diSessa and Abelson (1986) who envisioned

that programming would become a widespread literacy and created Boxer as an example of a

programming environment that could serve as an expressive medium for laypeople and not just

computer experts. They also explored this vision in their book Turtle Geometry: The Computer

as a Medium for Exploring Mathematics (Abelson & DiSessa, 1986) where they discussed ways

that Logo’s turtle geometry could support the exploration of advanced mathematical topics.

During the 1990s, researchers continued to build on Papert’s constructionist ideas and developed

environments to support youth in exploring other topics with computing (Strohecker, 1991;

Wilensky, 1995, 1997b). This decade saw a rise in agent-based modeling platforms like NetLogo

(Wilensky, 1999a), robotic construction kits like Programmable Bricks (Resnick, Martin,

Sargent, & Silverman, 1996), and visual programming languages like AgentSheets (Repenning

& Sumner, 1995) and LogoBlocks (Begel, 1996). These computing environments and their

derivatives continue to support new ways of learning varied topics such as statistics, music,

engineering, and electricity (e.g., Abrahamson & Wilensky, 2007; Bamberger & diSessa, 2003;

Blikstein & Wilensky, 2010; Sengupta & Wilensky, 2009).

Today, many courses under this computing education approach focus on computational

thinking. Popularized by computer scientist Jeanette Wing, computational thinking encompasses

ways of “solving problems, designing systems, and understanding human behavior, by drawing

on the concepts fundamental to computer science” (2006, p. 33). Wing predicted that

computational thinking would be instrumental to both innovation in every discipline and

www.manaraa.com

79

childhood education (Wing, 2008). In 2010, a committee of scholars convened to discuss the

implications of computational thinking on K-12 education, which highlighted the varying

perspectives that currently exist about the nature of computational thinking and its related

pedagogy (National Research Council, 2011).

To aid in the expansion of computational thinking, researchers have created frameworks

to guide the development of K-12 curricula. For example, Weintrop et al. (2016) developed a

taxonomy of computational thinking practices in high school science and mathematics courses to

guide the development of curricula and assessments. With a focus on (a) gathering, analyzing,

and sharing data, (b) modeling and simulating phenomena, (c) problem solving with

computational tools, and (d) systems-level thinking, the taxonomy aligns with a scientific view

of CS that aims to investigate and explain phenomena through the development and refinement

of computational models. Similarly, Angeli et al. (2016) developed a framework that delineates

the computational thinking competencies primary school students should master related to five

skills (i.e., abstraction, generalization, decomposition, algorithmic thinking, and debugging).

Within the past few years, the National Science Foundation has stimulated research in

this area through its STEM+C program that seeks to “build the evidence base for effective

pedagogy and pedagogical environments that will make the integration of computing within

STEM disciplines more age-appropriate and contemporaneously relevant to pre-K-12 STEM

education” (“STEM + Computing Partnerships (STEM+C),” 2016, p. 3). One example of

computing integrated into secondary courses is the Computational Thinking in Science and Math

(CT-STEM) project at Northwestern University that is developing NGSS-aligned lessons,

assessments, standards, and teacher training for biology, chemistry, physics, and mathematics

www.manaraa.com

80

courses (“CT-STEM,” 2016). The CT-STEM project emerges from the constructionist tradition,

the integration of computing in other disciplines, and computational thinking. One CT-STEM

lesson, Wolf Vs. Sheep (Wilensky, 1997a), uses an agent-based model created in NetLogo

(Wilensky, 1999a) to guide students through an exploration of population growth that can be

incorporated into biology or environmental science classes. Another example is the Bootstrap

curriculum that uses Common Core aligned units to help students learn algebra through video

game creation (Schanzer, Fisler, Krishnamurthi, & Felleisen, 2015). Each curriculum unit

focuses on a game feature (e.g., locating elements on a screen), a programming concept (e.g.,

expressions), and a math concept (e.g., coordinates) that students must integrate using the

WeScheme programming environment to add new features to their games. Beyond the

intersection of computational thinking and STEM, others have also focused on integrating

computational thinking into areas such as e-textiles and game design (e.g., Fields, Searle, &

Kafai, 2016; Holbert & Wilensky, 2011).

Summary. In the above sections, I summarized two approaches to computing education,

both stemming largely from the pioneering work of Seymour Papert. I have not yet mentioned

the role of teachers in these visions of computing education. Given that computing literacy is still

not on par with other literacies like reading, many teachers vary in their knowledge and

experience of how to use computers to support learning and teaching. In both approaches to

computing education, many teachers are confronted with new content and disciplinary practices

they need to learn to deliver their computing courses. As Solomon (1986) noted:

Computers offer a new opportunity to help teachers to enhance their teaching and

understanding of children and to keep schooling from becoming an alienating experience.

www.manaraa.com

81

Whether or not this will happen is unclear. To make it happen, action needs to be taken

now to reeducate educators to develop models of what might be possible. (p. 147)

To address this need, various professional development opportunities have been created for

teachers working in CS courses (e.g., Blum & Cortina, 2007; Goode & Margolis, 2011; Gray et

al., 2015; Guzdial, Ericson, Mcklin, & Engelman, 2014; “Professional Development,” n.d.) and

for teachers integrating computing into other courses (e.g., Bort & Brylow, 2013; Jenkins,

Jerkins, & Stenger, 2012; Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014). However,

transitioning teachers do not enter these experiences as blank slates. They bring with them their

ideas and habits developed from teaching in other disciplines. The question then is, how do

existing teacher knowledge, experiences, and epistemic cognitions influence learning to teach

CS? I address this question in the next section.

2.3.3. Transitioning to CS Teaching

In this section, I contrast CS with mathematics to identify aspects beyond content

knowledge that may be new or different for mathematics teachers transitioning into CS

classrooms. I focus on mathematics as a comparison discipline because all teachers who

participated in the case study described in this dissertation were certified as mathematics

teachers. Also, many states in the U.S. allow teachers certified in mathematics to teach CS and

for CS to count as a high school graduation requirement by substituting mathematics credits

(Ericson et al., 2008; Stanton et al., 2017). In the following paragraphs, I discuss how the

subculture practices, epistemological beliefs, and sources of teacher efficacy in mathematics may

present challenges in the transition to teaching CS.

www.manaraa.com

82

Teaching subcultures differ in their beliefs and practices. In a comparison of teaching

subcultures in mathematics, English, social studies, science, and foreign languages, Grossman

and Stodolsky (1995) found mathematics teachers reported less freedom to decide on course

content, more departmental coordination, a greater view of their discipline as static and

unchanging, and a greater belief in grouping students by prior achievement for beneficial

instruction. They also found that, like foreign language teachers, mathematics teachers viewed

their courses as highly sequential (i.e., prior course learning is required for future course

learning), well defined (i.e., greater consensus amongst teachers about course content), and more

in need of covering all the course curriculum. Depaepe, De Corte, and Verschaffel (2016), in

summarizing the literature on epistemological beliefs in mathematics education, described two

epistemological paradigms dominating the discipline: an absolutist perspective that views

mathematical knowledge as fixed and objective and a fallibilist perspective that views

mathematical knowledge as dynamic, relativist, and the outcome of social processes. Teachers

espousing more absolutist ideas tend to use transmission teaching methods and view learners as

dependent on teachers for learning. Teachers espousing more fallibilist ideas tend to use inquiry-

based teaching methods and view students as autonomous learners who construct their own

mental representations of mathematics knowledge. Smith (1996) offered insights into the source

of mathematics teachers’ efficacy. School mathematics in the U.S. is dominated by telling

mathematics where (a) instructional delivery focuses on teachers stating facts and demonstrating

procedures, (b) teachers follow course sequencing as presented in textbooks, and (c)

effectiveness is measured by the computational proficiency students achieve. In such an

environment, teachers feel efficacious in implementing telling mathematics when they can

www.manaraa.com

83

extensively study a manageable amount of math content and have clear guidance on how to

deliver that content. In other words, both the content and practices they need to use are

predictable. Despite efforts to reform mathematics into a more fallibilist view where teachers

guide students in exploring math concepts, teachers may continue to use traditional teaching

methods because this is the type of mathematics instruction they saw in their own schooling or

due to external pressures from students, teachers, and parents (Handal, 2003).

Transitioning CS teachers who bring the cultural practices and ideas of school

mathematics into their new CS courses may be challenged, or liberated, by a number of

differences. First, computing is a dynamic discipline. Although there are core principles to the

discipline (see Table 2.4), the field continues to evolve. In the late 1980s, there were only nine

core technology areas, but today there are thirty (Denning, 2003). The most recent curricular

guide for undergraduate CS programs (Joint Task Force on Computing Curricula & Society,

2013), written five years after its previous incarnation, introduced three new topical areas of

study to be covered in CS curricula: information assurance and security, platform-based

development, and software development fundamentals. At the K-12 level, the most commonly

used programming languages have changed nearly every decade from Fortran, BASIC, Logo,

and Pascal in the 1970s and 1980s (Johns Hopkins University Center for Social Organization of

Schools, 1983; Korotkin, Darby, Jr., & Romashko, 1970), to object-oriented programming

languages like Java and C++ starting in the 1990s (Stephenson, 2000), and more recently to

blocks-based programming tools like Scratch and Alice (Maloney, Resnick, Rusk, Silverman, &

Eastmond, 2010; Weintrop & Wilensky, 2015). Mathematics teachers who may be accustomed

to covering a predetermined knowledge base in their classes will need to become active learners

www.manaraa.com

84

in CS classrooms, updating their skills as the discipline evolves, new curricula emerge, and new

programming environments are developed. This need for continual learning can lead to feelings

of inefficacy (Kordaki, 2013), especially from mathematics teachers who may customarily derive

their efficacy from mastery of a predetermined knowledge base.

Second, CS invites methodological pluralism. That is, many open-ended CS problems

can be approached in different yet acceptable ways that arrive at accurate solutions. Looking

beyond correctness, these approaches can vary along multiple attributes such as efficiency in the

use of computational resources and readability (Bentley, 1982). Learners bring different styles of

problem solving to CS tasks such as the concrete, bottom-up style and the logical, abstract, top-

down style (Turkle & Papert, 1992). When given the same programming task, students follow

different pathways, some more productive than others, to reach their goal (Blikstein et al., 2014).

Enumerating all the possible approaches and pathways learners might follow is an onerous

undertaking. Instead, CS teachers need to anticipate common approaches and prepare

pedagogical tools to support the unexpected and alternative solutions that students might provide

(Hazzan et al., 2015). For mathematics teachers accustomed to problems with determinant

answers that can be solved using a fixed set of procedures, the plurality of CS problem-solving

might feel unsettling and require educators to develop comfort with some level of uncertainty in

their teaching.

Third, CS teachers are often the only CS teacher in their schools and may not work

within CS departments (Century et al., 2013; CSTA, 2015; Ni & Guzdial, 2012). This limits the

number of colleagues available to discuss issues related to CS teaching. Mathematics teachers

who may be used to coordinating frequently with other mathematics teachers in their building

www.manaraa.com

85

may need to search for professional learning communities beyond their campuses. Within CS,

these communities exist through professional networks like the CSTA, virtual communities (e.g.,

Cooper, Grover, & Simon, 2014; Morrison, Ni, & Guzdial, 2012), and groups formed at in-

person professional development workshops (e.g., Ryoo et al., 2015).

Fourth, compared to other core disciplines, CS is a relatively new subject that has only

been in American schools since the 1950s (e.g., Buchman, 1956). CS is not universally

accessible across American schools and students who gain exposure to CS do so through a

variety of opportunities including formal classes, self-teaching, online activities, and

extracurricular groups (Google Inc. & Gallup Inc., 2016b, 2016a), each giving students a

different knowledge base and skill set that teachers need to attend to in their classes. Many

transitioning teachers probably do not have extensive prior experiences with CS in a school

context or notions of how it is typically taught. Also, many transitioning teachers have limited

CS content knowledge (Ericson et al., 2008). In contrast, all mathematics teachers have

experienced some version of school mathematics as learners, have notions of how it can be

taught, and have been exposed to relevant content knowledge. CS may appear hard or seem

unknown for these teachers because, as Ben-Ari (1998) suggests, many novices have no

conceptual models of how computers operate or computing upon which to develop new

knowledge. They may, for example, not know how to organize a computer lab for effective

instruction or have useful metaphors from everyday life to draw upon in explaining concepts.

With a limited understanding of the discipline, they may underestimate the value of a course like

AP CS Principles because it does not fit stereotypical models of CS courses that have focused

heavily on programming.

www.manaraa.com

86

In sum, mathematics teachers transitioning into CS are facing two new arenas, the

discipline of CS and the discipline of school CS. Although mathematics teachers may benefit

from knowledge of a discipline closely related to CS, the subculture of school mathematics may

not translate directly to school CS. The prior knowledge, social supports, and curricular tools

from their mathematics teaching may not be useful or available in their CS classrooms. Thus, in

addition to learning new content, mathematics teachers transitioning into CS may also need to

learn new ways of teaching that align with the nature of computing.

2.4 Conceptual Frameworks

This dissertation study was designed to describe the evolution of teacher knowledge and

practices used by experienced mathematics teachers transitioning into computer science

classrooms with the support of tech industry professionals over the course of one school year.

Unlike most other studies that focus on pre-service teachers or expert teachers, I focus on

educators in the middle of the teaching experience spectrum to better understand how PCK

develops. I created two conceptual frameworks to guide this study: a framework of CS PCK

development and a framework of CS PCK. I used an abductive approach to develop these

frameworks drawing first on pilot data gathered during the 2014-2015 school year and then

revising these frameworks based on the literature reviewed above.

Although models of CS PCK and CS PCK development were presented earlier in this

chapter, I decided not to use them because of (a) distinctions I make between content knowledge

and PCK, (b) distinctions I make between knowledge and knowledge development, and (c) my

focus on transitioning teachers instead of expert teachers. Baxter’s (1987) model includes aspects

of content knowledge, what she calls knowledge of relationships among domains, knowledge of

www.manaraa.com

87

substantive structure of discipline (i.e., concepts and theories of a subject such as homeostasis in

biology), and knowledge of syntactic structure of discipline (i.e., ways new knowledge is

acquired in a field such as inquiry processes in biology). While she argued that content

knowledge and PCK are integrated in experienced teachers, I focus on transitioning teachers

where I believe these knowledge domains are more distinct. The KUI model (Bender et al.,

2015) contains four components I did not include: curricular knowledge, issues of the

educational system, teacher-related issues, and process dimensions. While I do not deny the

importance of knowledge about curricula and issues of the educational system, I consider these

knowledge bases separate from PCK. I also include a professional development component in

my PCK development model since I focus on describing how CS PCK develops within a

particular teacher learning context.

My frameworks do, however, share similarities with the existing frameworks of CS PCK

and CS PCK development. Like the framework produced by the KUI group (see Figure 2.3), my

CS PCK development framework includes components related to content dimensions, process

dimensions, teachers’ beliefs, and teacher efficacy. From Baxter’s model (1987), I include the

idea that the relationship between content knowledge and PCK differ based on a teacher’s

experience level. Like Lapidot (see Figure 2.2), I also include the cyclical nature of the teacher

learning process.

2.4.1. CS PCK Development Framework

The results of this literature review were used to refine a conceptual framework of CS

PCK development that I created based on pilot data gathered during the 2014-2015 school year

(see Figure 2.8). The framework presents a model of the cyclic mechanisms by which teachers

www.manaraa.com

88

trained in particular subject matters (e.g., mathematics) but new to teaching computer science

develop CS PCK through classroom experiences as part of an in situ professional development

program that includes support from volunteer content experts (i.e., tech industry professionals

outside the education field). The progression presented in this framework resembles generative

change, where teachers:

learn to talk to their students about their thinking, puzzle about what the responses tell

them about students’ understanding, decide how to use this knowledge in planning

instruction and interacting with students, and figure out how to learn more about the

students’ thinking. (Franke, Carpenter, Levi, & Fennema, 2001, p. 656)

Transitioning CS teachers are confronted constantly with unfamiliar content and new student

understandings in their classrooms. By attending to these experiences, making sense of them, and

incorporating them into their lessons, their learning becomes simultaneous with their teaching

and allows for continued growth (A. Ball, 2009; Franke, Carpenter, Fennema, Ansell, &

Behrend, 1998). The framework consists of seven components and the processes between them,

each of which is described below.

www.manaraa.com

89

Figure 2.8. Theoretical framework of CS PCK development.

Co-teaching. This component captures the specific professional development model

studied in this dissertation, which is described in chapter 3. In a co-teaching approach,

transitioning CS teachers collaborate with volunteer content experts to deliver computing

courses. Other models of CS PCK development might replace this component with different

learning activities (e.g., professional learning communities, summer workshops, pedagogical

repositories), and, depending on their intended outcomes, link directly to other components in the

model such as CS teaching knowledge. While the specific co-teaching model studied here

intends for transitioning CS teachers to increase their teaching knowledge and confidence, I

argue that instructional responsibilities requiring subject matter knowledge (e.g., creating unit

assessments) as opposed to general pedagogical tasks (e.g., classroom management) serve as the

primary mechanism guiding this development.

Instructional responsibilities. This component describes the practices instructors partake

in during their teaching. Examples of teaching practices include managing the classroom,

www.manaraa.com

90

presenting a lesson, and evaluating student work. Instructional responsibilities relate to core

practices focused on in mathematics education research (Grossman et al., 2009) and resembles

the fields of pedagogical operation identified in the KUI’s model of CS PCK (Hubwieser,

Magenheim, et al., 2013). I label this component as instructional responsibilities to highlight that

practices are divided between transitioning CS teachers and their volunteers, and that each

person might be responsible for a subset of all teaching practices used in the classroom. This

distinction is captured by the arrow labeled distributes which extends from the co-teaching

component to the instructional responsibilities component.

CS teaching knowledge. While scholars have identified many areas of teaching

knowledge, I focus on content knowledge and PCK. Content knowledge describes one’s

understanding of subject matter (e.g., how to use loops in the Java programming language). PCK

describes one’s understanding of instruction and student understanding (e.g., representations of

loops and common difficulties students have in creating loops). Shulman (1986) originally

described PCK as a subset of content knowledge, while Ball and colleagues (2008) distinguished

different types of content knowledge specific to teaching. Regardless of how content knowledge

and PCK are delineated, it is clear from prior research that the two knowledge areas are tightly

interwoven. Baxter (1987) and Liederman et al.’s (2012)’s work with experienced CS teachers

suggest the relationship between content knowledge and PCK differs based on amount of

teaching experience, with greater experience leading to more integrated content knowledge and

PCK. I convey this developmental view of content knowledge and PCK with two concentric

circles that might be separate in novice teachers and completing overlapping in the most

www.manaraa.com

91

experienced teachers. The specific categories of teacher knowledge will be discussed below in

the CS PCK framework.

Instructional Responsibilities to CS Teaching Knowledge. The arrows in the framework

suggest that an individual’s teaching knowledge will influence which instructional

responsibilities they assume and how they enact them. Also, as teachers gain experience enacting

their instructional responsibilities, they will develop greater teaching knowledge. Simply

enacting responsibilities is insufficient for knowledge growth; teachers must also make sense of

the feedback they receive from students when performing their teaching tasks (Franke et al.,

1998). But not all teachers respond generatively when faced with unexpected or new experiences

and they may need additional supports (e.g., collaboration with teachers or researchers,

examining artifacts of practice outside of class) to stimulate their reflection and change their

practices (Baumfield, 2006). Lastly, it can be difficult initially for teachers trained in more

traditionalist, teacher-centered educational approaches to assume a stance of a learner who gains

knowledge from enacting instructional responsibilities (A. Ball, 2009). This is captured by the

epistemic cognitions component of the framework, which is described below.

Confidence. Related to Bandura’s theories of self-efficacy (1977), this component

captures a teacher’s belief in his or her ability to accomplish professional duties. As summarized

above, a lack of confidence can prevent teachers from learning and tends to be lower in teachers

with weaker content knowledge (Goldsmith et al., 2014; Mizzi, 2013; Ross et al., 1999;

Swackhamer et al., 2009). A lack of confidence can also lead teachers to avoid teaching, rely on

prepared instructional materials, and minimize teacher-student discourse (Harlen & Holroyd,

1997; Schneider & Plasman, 2011). Within CSER, Ni and colleagues (Morrison et al., 2012; Ni,

www.manaraa.com

92

2009; Ni & Guzdial, 2012) have found that lack of confidence prevents some teachers from

implementing contextualized computing curricula. The arrows in the framework suggest that an

individual’s confidence will influence which instructional responsibilities they assume and how

they enact them. Also, as teachers gain experience enacting their instructional responsibilities,

they will develop greater confidence in their teaching abilities.

Epistemic cognitions. Epistemic cognitions encompass ideas about the nature and

acquisition of knowledge. These ideas can depend on a teacher’s particular working context and

career stage, with certain ideas encouraging PCK development more than others (Hashweh,

1996, 2013; Luft & Roehrig, 2007; Postholm, 2012). In my theoretical framework, I focus on

epistemic cognitions about how learners construct CS knowledge (i.e., their sources and

justification of knowledge; Chinn et al., 2011) and teachers’ aims in helping students acquire CS

knowledge (Buehl & Fives, 2016). This component is distinct from the CS teaching block

because I assume that transitioning CS teachers will begin their CS assignments with existing

ideas about teaching and student learning based on teaching experiences in other subjects. For

example, a teacher trained in mathematics might begin her CS teaching assignment with the

belief that learners acquire knowledge through the transmission of information and that her goal

is to help students acquire procedural fluency. These existing beliefs will likely influence how

teachers decide to implement their co-teaching partnership, conduct their instructional

responsibilities, and learn from their experiences.

Student responses. Berliner once commented that “good teaching is judged through

reliance on standards applied to the tasks of teaching and related to norms for professional

behavior, including moral considerations. Successful teaching is about whether intended

www.manaraa.com

93

learnings were achieved” (Berliner, 2001, p. 468). The student responses component relates to

successful teaching emerging from the CS teaching box. One would expect that as educators

improve their CS teaching, their students will benefit from improved outcomes. At the same

time, students serve as a source of PCK development for teachers (Baxter, 1987). Their

homework solutions and in-class questions provide teachers with examples of student

understanding. Their reactions to course projects and lessons give teachers feedback on the

effectiveness of their instruction, which might lead them to reinforce productive practices and

refine less effective ones.

Sociocultural factors. Teacher cognition is not detached from the sociocultural contexts

within which teachers work (Avalos, 2011; Opfer & Pedder, 2011). Boards of education decide

who can be a CS teacher, which computing courses are taught, and whether these courses are

offered as electives or required classes. School cultures may be more or less supportive of

encouraging professional growth amongst staff. Participation in a professional learning

community and access to professional training can support teacher development, but there may

be disparities in access to these opportunities. The field of CS influences what technologies are

commonly used and taught in secondary classrooms. Students bring their own interests and prior

backgrounds into computing courses that educators must respond to in their teaching. All of

these factors can influence opportunities, motivation, and mechanisms for teacher learning.

2.4.2. CS PCK Framework

The second framework I developed describes the PCK central to computer science

teaching for transitioning teachers (see Figure 2.9). This framework, which closely resembles

Shulman’s (1986) original definition of PCK, shares similarities with the models presented by

www.manaraa.com

94

Baxter (1987) and the KUI group (Bender et al., 2015) as it relates to knowledge of student

understanding, representations, and teaching strategies. The model contains three components:

knowledge of student understanding, knowledge of student interest and motivation, and

knowledge of content and teaching. In my descriptions of these components, I also briefly

summarize related literature on the specific knowledge computing teachers need to draw upon in

their work.

Figure 2.9. Theoretical framework of CS PCK.

Knowledge of student understanding. Borrowing from Shulman, this component relates

to a teacher’s “understanding of what makes the learning of specific topics easy or difficult: the

conceptions and preconceptions that students of different ages and backgrounds bring with them

to the learning of those most frequently taught topics and lessons” (Shulman, 1986, p. 9). This

component also includes an understanding of students’ common problem-solving strategies.

While CS is not just programming, research on novice programmers provides insights into

common misconceptions, difficulties, and problem-solving approaches of students new to CS.

Studies of novice programmers date back to the 1970s. For example, Miller (1974) asked

non-programmers to arrange a set of commands into a program that would accomplish a name

sorting task and found participants struggled with statements involving logical disjunction,

negatively expressed statements, and debugging. Sorva (2012) synthesized this literature into a

www.manaraa.com

95

list of 150 misconceptions and identified the following topics that were often cited in research on

student difficulties: variables, assignment, references and pointers, classes, objects, constructors,

and recursion. Other difficulties center around assembling programs from subcomponents,

conditionals, looping constructs, and tracing code (Guzdial, 2004; Kaczmarczyk, Petrick, East, &

Herman, 2010). Another area of research has explored student difficulties with planning and

implementing solutions (Ginat, 2008; Hanks & Brandt, 2009; Rist, 2004). When planning

problem solving approaches, novices tend to pick one solution and stick with it, make hasty

decisions, use a bottom-up approach, and ignore disconfirming evidence. When implementing

their solutions, novices tend to jump quickly to coding, write out all their code before executing

it, do not adequately test their solutions, and patch errors instead of finding complete solutions.

Beyond these specific misconceptions and less effective approaches, researchers have

also investigated the underlying causes of student difficulties. Clancy (2004) identified six

sources of novice misconceptions which he argued resulted from students transferring existing

knowledge into their nascent understanding of programming. These sources include

inconsistencies between English and programming terminology (e.g., while means continuous

testing in English but one test per iteration in programming), inconsistencies between

mathematical notation and programming syntax (e.g., = represents equality in mathematics but

assignment in programming languages), prior experience with other programming languages,

overgeneralizing examples, modifying correct rules, and misapplying pedagogic metaphors.

Similarly, du Boulay (1986) described five areas of difficulty that novices confront when

learning to program: recognizing what problems programming can solve, modelling how

computers execute commands, learning the syntax and semantics of programming languages,

www.manaraa.com

96

acquiring standard templates for common tasks, and planning, implementing, and testing

programs. He also identified interactions (e.g., how components of a program work together) as a

source of confusion for learners. Rist (2004) suggested that novice programming behavior can be

explained by memory overload and limited design patterns upon which to judge their solutions.

Lastly, Pea (1986) presented three conceptual programming bugs based on studies of elementary

and secondary students using the Logo and BASIC programming languages: parallelism bug

(assuming different lines of code can be executed simultaneously), intentionality bug (attributing

foresightedness to the program), and egocentrism bug (assuming there is more meaning behind

their code). As Spohrer and Soloway observed, “instruction can be improved when educators

gain a better understanding of what students do and do not know … instructors should strive to

familiarize themselves with specific high-frequency bugs, and to learn as much as possible about

the origins of all bugs” (1986, p. 632).

Knowledge of student interest and motivation. This component relates to a teacher’s

understanding of what students find engaging in computer science, what dissuades them, and

how those factors can be accounted for in teaching practices. As Ball et al. noted, “when

choosing an example, teachers need to predict what students will find interesting and

motivating…each of these tasks requires an interaction between specific mathematical

understanding and familiarity with students and their mathematical thinking” (2008, p. 9). This

knowledge component is particularly important for teachers today as the field attempts to create

inclusive learning environments where more students feel welcomed in CS courses. Research

related to this component has focused on engaging topics, contextual and individual influences,

and student aversion to CS.

www.manaraa.com

97

Social factors play a role in encouraging students studying computer science. For some

students, family support, friends in CS, and relationships with mentors increase persistence in

introductory programming courses (Barker, McDowell, & Kalahar, 2009; Katz, Allbritton,

Aronis, Wilson, & Soffa, 2006). Students are also motivated by work they find relevant to their

own experiences and that allows them to express who they are (Margolis, Goode, Chapman, &

Ryoo, 2014). At the same time, many students are dissuaded from persisting in computing

courses for various reasons. Negative perceptions of CS as isolating, constant interaction with

computers, and solely programming can repulse students (Biggers, Brauer, & Yilmaz, 2008;

Carter, 2006). Other factors such as intense workloads, falling behind in class, and a lack of prior

programming experience can lead students to withdraw from CS (Kinnunen & Malmi, 2006;

Petersen, Craig, Campbell, & Tafliovich, 2016).

Researchers and educators have tried various methods to attract and retain students in

computing. Embedding topics such as music, media computation, video games, e-textiles, and

robotics into CS have enthused many students (e.g., Basawapatna, Koh, & Repenning, 2010;

Buechley, Eisenberg, & Elumeze, 2007; Freeman et al., 2014; Guzdial, 2003; Petre & Price,

2004). Culturally relevant computing approaches also engage youth by bridging their computing

experiences with their cultural identities (e.g., Eglash, Bennett, O’donnell, Jennings, &

Cintorino, 2006; Hooper, 1996; Pinkard, Erete, Martin, & Royston, 2017; Scott & White, 2013;

Searle & Kafai, 2015). Researchers caution against relying exclusively on contextualized

approaches that appeal to the interests and backgrounds of students. Frieze (2007) argued that

learning environments balanced in terms of gender, student personalities, and support provided

to students – instead of environments that target specific groups – encourages a broader range of

www.manaraa.com

98

students in successfully participating in CS courses. Guzdial (2010) suggested that while

contextualized approaches can increase retention, students who eventually take decontextualized

CS courses will be able to apply their knowledge to a wider variety of applications.

Knowledge of content and teaching. Ball et al. (2008) included this component in their

model of Mathematical Knowledge for Teaching. Knowledge of content and teaching concerns

teacher understanding of appropriate representations of CS ideas, methods of presenting those

ideas to students, and sequencing content for effective instrument. In their guide to creating a

methods course for prospective secondary CS teachers, Hazzan, Lapidot, and Ragonis (2015)

described various pedagogical tools teachers can use in their practice to introduce and reinforce

CS concepts (see Table 2.6).

Computer labs are another integral component of CS instruction where teachers need to

make decisions regarding organization and which programming and visualization tools to

incorporate (Hazzan et al., 2015). Pair programming is a method of collaboration for computer

labs where one partner controls the computer while the other partner constantly reviews and

comments on the work. Studies of pair programming provide some evidence that students using

pair programming write better programs, ask instructors less questions, have greater satisfaction

and confidence, and are more likely to complete their courses than students who work

independently (McDowell, Werner, Bullock, & Fernald, 2003; L. A. Williams & Kessler, 2001).

Integrated development environments (IDE) are tools that facilitate program development

providing users with supports such as debuggers, autocompletion, and compilers. Many IDEs

have been developed for novices to address issues that make programming difficult to learn.

Kelleher and Pausch (2005) categorized nearly 80 IDEs designed to alleviate common novice

www.manaraa.com

99

Table 2.6

Pedagogical Tools for Computer Science (Hazzan et al., 2015)

Tool Definition Example

Pedagogical
games

Social games that aim at
teaching computer science
ideas, which can be played
either with or without
computers

A version of bingo where board cells
contain conditional statements whose
execution depends on the announced value

CS-Unplugged Concepts are presented
through engaging activities
and puzzles (e.g., using cards,
crayons, active playing)

Introduce sorting algorithms by having
students use a scale to order a set of
objects of unknown weights

Rich tasks Programming exercises that
can be solved in a variety of
ways and promote discussion
about major CS ideas

Write a method that checks whether a
given date is valid. The method should
check whether three given integers (a day,
a month, and a year) can represent a valid
date in the twenty-first century. Assume
that each month has 30 days.

Concept maps A graphical tool for
representing concepts and the
connections between them

Construct a concept map which represents
all topics covered in the course so far

Classification of
objects and
phenomena from
life

Classify a set of images from
everyday life related to a
computing concept

Present students with a set of pictures that
they classify according to their own
criteria. During a share out period,
teachers introduce terminology related to
the underlying computing concept.

Metaphors Analogies between CS topics
and ideas familiar to students

Students create posters to explain the
concept of variable through metaphors,
they discuss the advantages and
disadvantages of each poster

problems such as mastering the mechanics of writing programs or knowing where to begin and

what is possible to create through programming. Similarly, Guzdial (2004) provided a

genealogical grouping of several environments stemming from Logo, Smalltalk-72, and more

traditional languages, where relevance, applicability, and immediate feedback are incorporated

www.manaraa.com

100

into their designs to sustain engagement with programming. These tools minimize common

programming obstacles and make it possible for youth to create their own computational

artifacts.

Problem solving is an integral component of CS with which novice learners often

struggle (Robins, Rountree, & Rountree, 2003). Through a content analysis of textbooks,

worksheets, and exams, Ragonis and Shilo (2013) identified nine categories of problem solving

questions used in CS: address or define criteria, argue and justify, analyze, compare, complete,

convert, discover, develop, and integrate. These categories of problem solving are reflected in a

set of question types identified by Hazzan et al. (2015) for use in CS teaching, which can be

presented as pure algorithmic tasks that focus on computing structures, narrative algorithmic

tasks that are embedded within a context, or selected response items with a limited number of

answer choices (see Table 2.7).

While these instructional tools have shown promise as effective teaching methods, there

are times when it may not be appropriate to use them or when they need to be modified for

specific contexts. With pair programming, for example, some students will resist collaborative

work and others will leave all the tasks to their partners (L. Williams, 2007). Regarding

programming environments designed specifically for students, it is still unclear how useful they

are in helping students transition to high-level languages like Python or Java (Armoni,

Meerbaum-Salant, & Ben-Ari, 2015; Powers, Ecott, & Hirshfield, 2007). Also, some students

find these environments inauthentic, less powerful, and difficult to manage compared to high-

level languages (Weintrop & Wilensky, 2015), which may be demotivating. Lastly, many people

report CS Unplugged activities to be engaging, but some studies suggest these activities need to

www.manaraa.com

101

be modified to better meet learning goals and link more directly with core CS topics (e.g.,

Rodriguez, Rader, & Camp, 2016; Taub, Ben-Ari, & Armoni, 2009). Teachers need to be aware

of the strengths and limitations of these instructional devices and how they might need to be

adapted for their particular students.

Table 2.7

Computer Science Question Types (Hazzan et al., 2015)

Type Definition

Develop a solution An open problem to which learners develop their own
solutions (e.g., algorithm, pseudo-code, a program script)

Develop a solution using a
given module

A problem to which learners develop a solution while making
use of a given module

Trace a given solution Learners are presented with code and trace the execution of
that code

Analyze code execution Learners review a program and analyze aspects of its
execution

Find the purpose of a given
solution

Learners are presented with a solution to an unknown
problem and asked to identify what problem it solves

Examine the correctness of a
given solution

Learners review a solution and determine if it solves a given
problem correctly

Complete a given solution A given problem and an incomplete solution are given,
students complete the missing instructions so that the final
code solves the problem correctly

Manipulate instructions A given problem and its solution are given, students address
different manipulations on the solution

Estimate efficiency Learners estimate the efficiency (i.e., the order of magnitude
of runtime) of a given solution

Design a question Learners create their own questions
Examine programming style Learners examine the programming style of different

solutions to the same task
Transform a solution Learners transform a given solution into a different

programming approach, language, or paradigm

www.manaraa.com

102

2.4.3. Research Questions

Drawing on the literature reviewed in this chapter and the two conceptual frameworks

presented above, I focused on the following research questions in this dissertation:

1. What knowledge of computer science content, student thinking, and instructional

strategies do teachers develop?

2. What teaching tasks (i.e., instructional responsibilities) do teachers undertake when

planning and implementing their CS lessons?

3. How does teaching knowledge support the implementation of teaching tasks?

www.manaraa.com

103

CHAPTER 3. METHODS

In this chapter I describe the procedures I used to examine PCK in computer science

teachers participating in a co-teaching, on-the-job professional development program. I begin

with a discussion of the methodology underpinning my work. Then I describe the professional

development program explored in this study, the study participants, and the contexts within

which the participants worked. The second half of the chapter is devoted to the data sources,

procedures, and analyses used in the study. At the end of the chapter, I provide an overview of

my background to highlight the perspective I brought to this study based on my personal,

educational, and professional experiences.

3.1 Methodology

Creswell (2008) suggests researchers explicate the beliefs underpinning their work so that

audiences understand their selection of methods and analytic approaches. After years of

schooling in both computing and the humanities, training in an interdisciplinary graduate

program, and professional experience with a multifaceted research organization, I have adopted a

pragmatic worldview that foregrounds practical applications over philosophical distinctions and

embraces a pluralistic approach for understanding phenomena. Morgan (2007) distinguishes

pragmatism from other worldviews in its use of (a) abductive reasoning that cycles between

induction and deduction, (b) intersubjectivity that acknowledges researchers assume different

frames of reference during their work, and (c) transferability to determine how findings can be

applied to some settings beyond the study context. Below I explain how a pragmatic worldview

informed the research design and analysis of this study.

www.manaraa.com

104

This study, and the larger body of research within which it is situated, explores

knowledge for teaching computer science at the secondary level. Teacher knowledge is not a

new topic to the education research community and so the CSPCK team at WestEd drew on

existing theoretical frameworks to inform decisions during our study planning phase. We

selected Shulman’s PCK framework (1986) as a guide given its influence on the study of teacher

knowledge over the past thirty years. The wealth of existing research on PCK in other domains

provided us with a starting point for forming questions, selecting methods, and thinking about

analysis. However, the limited amount of research on PCK within computer science, particularly

at the secondary level, gave rise to the need for exploratory approaches to understand the

nuances of teacher knowledge within this understudied domain. Our team decided on a mixed

method approach to address the question of how do experienced educators learn to teach

computer science.

The quantitative arm of our work (i.e., the main study) consisted of survey and

assessment data collected from teachers, volunteers, and students at the beginning and end of the

school year. We used four instruments: background questionnaires focused on the professional

experiences of teachers and volunteers and their feelings of readiness to teach CS; a survey to

measure students’ attitudes towards CS; content assessments for teachers and students; and a CS

PCK assessment for teachers and volunteers. The qualitative arm of our work, which is the focus

of this dissertation, consisted of a collective case study with six TEALS teams located in the San

Francisco Bay region of the United States.

A collective case study involves selecting multiple cases with both redundant and varying

characteristics and examining them jointly to understand an issue (Stake, 2000). Multiple case

www.manaraa.com

105

studies support theory building better than a single case because cross-case comparison makes it

easier to distinguish idiosyncratic findings from significant patterns (Eisenhardt & Graebner,

2007). Our rationale for selecting a case study approach was to gather information on how

teachers developed CS PCK during the school year, explain the mechanisms behind the results of

the main study, and identify emergent themes related to PCK development. Stake also notes that

case study work involves the triangulation of data to “reduce the likelihood of

misinterpretation…also to clarify meaning by identifying different ways the case is being seen”

(2000, pp. 453–4). For this reason, I incorporated a combination of self-reported data,

observations, and performance measures into the case study design. I also supplemented the case

study data with assessment and questionnaire data gathered as part of the main study. While the

type of methods I selected for the case study remained consistent during the study year, the

instruments underwent multiple rounds of revisions. This iterative development process allowed

me to incorporate early stage findings into the instruments and to address methodological gaps

that became apparent once the study began (Eisenhardt, 1989). Instrument changes resulting

from this iterative process and their impact on study analysis will be discussed below. Lastly, I

began analysis using a deductive approach where I attempted to understand the collected data

through the lens of Shulman’s PCK framework (1986) and its derivatives. However, I found the

deductive approach somewhat limiting because there was little prior research specific to CS PCK

to which I could compare my results. So, I also employed inductive techniques to generate

patterns in the data specific to CS content.

Lastly, it is worth noting that a case study, like other approaches, is not without its limits.

While the case study strategy provides a way to build theory about an understudied phenomenon,

www.manaraa.com

106

it can be inundated by large amounts of data and the peculiarities of individual cases (Eisenhardt,

1989). However, as Stake commented, “the purpose of a case report is not to represent the world,

but to represent the case…the utility of case research to practitioners and policy makers is in its

extension of experience” (2000, p. 460). Furthermore, case studies are useful for identifying

important constructs and less effective at identifying their relative importance (Eisenhardt &

Graebner, 2007). So, by using a case study approach, this work focused on identifying and

understanding the constructs important to CS PCK development. Future studies employing other

methods will be needed to generate results and theory that are generalizable to the larger

community of transitioning CS teachers.

3.2 Professional Development Program

Case study participants were enrolled in a professional development program offered by

TEALS, an organization focused on increasing the number of computing courses offered in U.S.

high schools. TEALS began in 2009 when a Microsoft employee volunteered to teach computer

science at a high school in Washington and since then has experienced rapid growth. At the start

of this dissertation, 7,000 students at 131 schools across 19 states were enrolled in TEALS

courses. In the TEALS PD model, high school teachers and volunteers from the tech industry

collaboratively teach computing courses. The year prior to starting in the program, potential

volunteers and interested schools undergo a rigorous recruitment process to ensure their

commitment and preparedness for the program. Volunteers are required to have a CS degree or

equivalent industry experience and participate in interviews with representatives from TEALS

and partner high schools. Similarly, schools interested in participating in the program complete

applications and attend interviews including a district administrator, a school administrator, and

www.manaraa.com

107

the classroom teacher. Selected schools sign formal agreements detailing the responsibilities of

all parties involved in the program and designating a teacher for the TEALS course. The summer

prior to their courses, teachers and their volunteers communicate to discuss their plan for the

school year. Teachers are required to participate in a summer professional development program

appropriate for their course; these programs are not offered by TEALS. Volunteers attend a 40-

hour, hybrid summer training offered by TEALS. TEALS employs regional managers who

mentor teaching teams, occasionally visit classrooms, and organize local meetings for

participants. TEALS also hosts a private online forum where teachers and volunteers can interact

with other participants. Lastly, school administrators commit to conducting multiple classroom

observations during the school year and providing teaching teams with feedback. Most courses

are offered during the first period of the day, before volunteers begin their regular work day.

During the 2015-2016 school year, TEALS offered three models in their PD program:

teaching assistant, consulting support, and co-teaching. The teaching assistant model was

designed for experienced CS teachers. In this model, one to two volunteers provide support with

grading and assisting students every class session. The consulting support model was also

designed for experienced CS teachers. In this model, one to two volunteers are available to

support teachers as needed and may visit the classroom monthly. The co-teaching model (see

Figure 3.1) was designed for teachers new to computer science. In this model, three to four

volunteers participate in delivering instruction, grading, and assisting students every class

session; volunteers usually alternate days with each volunteer attending class half the week. This

model begins with volunteers assuming the bulk of instructional responsibilities while teachers

focus on learning course content. As teachers gain experience and confidence with course

www.manaraa.com

108

materials, responsibilities shift to where teachers assume most of the instructional

responsibilities. At the end of the co-teaching model, high school teachers lead courses

independently. In this case study, I focus on teachers who used the co-teaching model.

Figure 3.1. TEALS co-teaching model.

Two computing courses are offered through the TEALS program. The semester-long

Introduction to Computer Science Principles (Intro) course is based on the University of

California at Berkeley’s largely successfully CS10 course for non-CS majors called The Beauty

and Joy of Computing (BJC). The course introduces some of the big ideas of computing,

discusses the history and future of the field, and teaches students programming with the block

language Snap!. The year-long AP Computer Science A (AP) course is based on the University of

Washington’s CSE 142 course for CS majors. AP CS A introduces students to the Java

programming language. Neither course requires prior programming experience. As a young

organization, the TEALS program evolves each year. Starting in the 2015-16 school year,

Year 0
•Volunteers attend TEALS training over the summer
•Teachers are encouraged to attend course-specific professional development (this requirement must be

completed before the end of the TEALS program)

Year 1
•1-2 volunteers lead CS course
•0-2 volunteer TAs assist with grading and answering student questions
•Teacher coordinates team, provides classroom management, and learns CS content from volunteers'

lessons
•Teacher takes on a TA role in the second half of the course

Year 2
•1-2 volunteers and teacher co-teach course

Year 3
•Teacher leads course independently

www.manaraa.com

109

TEALS provided instructional teams with complete curriculum packages for the Intro and AP

courses containing detailed weekly lesson plans. They also supplemented the Intro course with a

second semester introduction to the Python programming language. This additional semester was

included to support teachers who needed to extend their Intro course through the entire school

year. Some Intro teams, having already developed a plan for their second semester, continued

using their own curricula (e.g., an introduction to HTML or an introduction to Java).

TEALS differs from other PD programs because their model is integrated into teachers’

classes and involves content experts outside of the education world. Some might judge this

model as less than effective because (a) learning in the moment provides teachers with little time

for the reflective activities that support teacher knowledge development and (b) the collaboration

of pedagogical experts (the teachers) with content experts (the volunteers) does not guarantee

teachers will automatically obtain PCK specific to CS. Is it worth studying PCK development in

teachers if they are participating in an ineffective PD program? Next, I compare the TEALS

model against models of effective PD to highlight the strengths and weaknesses of this program.

Desimone (2009) identified the following five features of teacher learning activities that

are associated with change in teacher knowledge, practice, and to some extent student

achievement: content focus, active learning, coherence, duration, and collective participation.

First, effective teacher learning activities focus on both subject matter content and how students

learn that content. Teachers in the TEALS program are immersed in the subject matter content of

their classes while delivering lessons and assisting students. Their exposure to how students learn

that content is variable. This can depend on the summer PD they attend and the ways in which

they support students in their courses. Second, effective teacher learning also involves active

www.manaraa.com

110

learning activities as opposed to passive activities like lectures. TEALS provides multiple

opportunities for teachers to learn, for example, by observing the lessons delivered by volunteers,

discussing student progress in their teaching teams, or evaluating student work. However, how

teachers benefit from these opportunities can depend on factors such as teacher-volunteer

dynamics and teachers’ feelings of readiness. Another feature of effective teacher learning

activities is coherence with teachers’ knowledge and beliefs. While such coherence will depend

on individual characteristics, TEALS encourages schools to identify teachers for the program

who believe in the co-teaching PD model and are committed to leading the course independently

after two years. Another feature of effective teacher learning activities is sufficient duration,

which the literature suggests includes activities spread over a semester and 20 hours or more of

contact time. The TEALS program is embedded in teachers’ courses which are either a semester

or a year in length and last well over 20 hours. Lastly, collective participation where teachers can

work with colleagues in their school is a characteristic of effective teacher learning activities.

Many CS teachers are the only CS teachers in their schools, so meeting this criterion is difficult

for CS PD programs across the nation. TEALS does not explicitly arrange for collective

participation amongst teachers within the same school. However, TEALS fosters collective

participation amongst teachers and their volunteers as they work together to deliver a course,

amongst teachers in the same locale who attend optional meetings organized by regional

managers, and amongst all teachers and volunteers who elect to participate in the online TEALS

teaching forum. While these methods of collective participation are not identical to in-school

partnerships, they do provide teachers multiple venues to discuss their teaching with other

educators who are participating in the same PD program.

www.manaraa.com

111

In creating a model that addresses the urgent need for CS courses, TEALS may have

compromised efficacy for immediacy. A comparison against Desimone’s (2009) five

characteristics of effective PD suggests that the program is of sufficient duration and supports

collective participation that can lead to teacher learning and change in practice. However, the

way in which TEALS incorporates a focus on subject matter content, active learning tasks, and

coherence with teacher knowledge and beliefs might lead to differing outcomes based on how

individual teachers and volunteers implement their co-teaching partnerships.

3.3 Participants and Context

Recruitment for this case study began in fall 2014 and ran parallel to recruitment for the

main study. I opted for an opportunistic, theoretical sampling approach for this study. Selecting

among the first participants to consent allowed me to maximize the number of case study visits

conducted during the 2014-2015 school year and provided more time to build rapport with

participants. I also considered course assignments and school location when selecting potential

participants so that a range of experiences and school contexts would be represented in the study.

Seven teachers joined the case study during the 2014-2015 school year. Two of these teachers

withdrew from the case study at the end of the school year, so I recruited an additional teacher to

participate in the 2015-2016 school year. Five returning participants and one new participant

took part in the case study presented here. Teachers received a stipend of $1,000 for each year of

participation in the case study.

Also, while this dissertation does not focus explicitly on the impact of context on

teaching, it is important to note that the contextual factors within which educators work can

shape their PCK. As Berliner notes, "context has to be thought of as a third variable and probably

www.manaraa.com

112

of equal status with talent and practice in the debate over important influences in the

development of accomplished, exemplary, or expert teachers" (2001, p. 466). In the following

paragraphs, I provide a brief description of each teacher’s background, their stage in the TEALS

program, and the context (i.e., locale and schools) within which they worked during the study

timeframe.

3.3.1. Participating Teachers

Mr. Edwards. Mr. Edwards, a fourth-year TEALS participant, taught the AP course. His

teaching team comprised two volunteers who also worked with him the previous two years. His

volunteers participated in the course intermittently throughout the study year. Mr. Edwards had

more than 25 years of teaching experience and was certified to teach mathematics and art.

During the study, he also taught digital arts and animation courses that involved some

programming. In the 1990s, he taught AP CS A when it focused on the Pascal programming

language. He did not provide information about previous careers, age, or ethnicity.

Ms. Jones. Ms. Jones, a third-year TEALS participant, taught multiple sections of a two-

part course. During the first semester, she taught the Intro curriculum, and during the second

semester she taught an introduction to Java programming. Her teaching team comprised four

volunteers who worked with her the two prior years. One of her volunteers was previously a

teaching assistant at the University of California at Berkeley for the BJC course upon which the

TEALS Intro curriculum is based. Ms. Jones had 13 years of teaching experience and was

certified to teach mathematics. During the study, she also taught trigonometry. Her professional

www.manaraa.com

113

experience priors to teaching involved a career in the film and entertainment industry. She

identified as female and Asian and she was in her early 40s.

Ms. King. Ms. King, a second-year TEALS participant, taught three sections of the AP

course. Her teaching team comprised two male volunteers who also worked with her during the

2014-2015 school year. She had 11 years of teaching experience and was certified to teach

mathematics. During the study, she also taught support mathematics. Towards the end of the

study year, Ms. King was appointed the first computer science department chair at her high

school. Before TEALS, she taught an introductory Java course based on an Oracle Academy

curriculum. Her professional experiences prior to teaching involved a career in user interface

design. She identified as female and Caucasian and she was in her late 50s.

Mr. Miller. Mr. Miller, a second-year TEALS participant, taught two sections of the

Intro course. He taught the first section collaboratively with volunteers and the second section

independently. His teaching team comprised two volunteers, one of whom he worked with the

previous year. He had 38 years of teaching experience and was certified to teach mathematics,

life sciences, and French. During the study, he also taught algebra. Mr. Miller mentioned no

careers outside of teaching. He identified as male and Caucasian and he was in his early 60s.

Mr. Perez. Mr. Perez, a second-year TEALS participant, taught one section of the Intro

course. During the 2014-2015 school year, he taught the AP curriculum. He joined the case study

during the 2015-2016 school year. His teaching team comprised three volunteers who were only

active during the first semester. He had two years of teaching experience and was certified to

teach mathematics. During the study, he also taught algebra. Prior to becoming a high school

www.manaraa.com

114

teacher, Mr. Perez had experience tutoring college students in computer science. He identified as

male and Caucasian and he was in his mid-20s.

Ms. Robinson. Ms. Robinson, a second-year TEALS participant, taught one section of

the AP course. Her teaching team comprised four volunteers who also worked with her during

the 2014-2015 school year. She had 11 years of teaching experience and was certified to teach

mathematics. During the study, she also taught geometry and an introductory computing course

based on the curriculum used by other teachers in her school district. Ms. Robinson’s

professional experiences prior to teaching involved multiple roles in the tech industry including

web designer, quality insurance engineer, and software engineer. She identified as female and

Latina and she was in her mid-40s.

3.3.2. Professional Development Stages

Although all study participants employed the co-teaching model, each participant

implemented their co-teaching partnerships differently. These differences correspond to three

stages in the TEALS co-teaching model. Ms. Robinson, was in the volunteer-led stage. She

relied heavily on volunteers to lead her AP course during the first term and she began

transitioning into a lead role on her teaching team during the second term. Two teachers, Ms.

Jones and Mr. Miller, were in the collaborative stage. They worked with volunteers to plan,

implement, and revise their courses throughout the year. The remaining three teachers, Ms. King,

Mr. Edwards, and Mr. Perez, were in the teacher-led stage for the entire school year. They

directed their courses receiving support from volunteers to assist students, grade assignments,

and explain topics unfamiliar to the teachers. The volunteers working with Mr. Edwards and Mr.

www.manaraa.com

115

Perez gradually withdrew from their responsibilities during the school year. I use these three PD

stages (see Table 3.1) to frame some of the study results.

3.3.3. Locale

This dissertation was conducted in the San Francisco Bay area in the western United

States, specifically in the counties of San Francisco, San Mateo, and Santa Clara. Demographic

and economic profiles of the three counties represented in the study are provided in Figure 3.2

and Figure 3.3. This region is wealthier than most other regions of the United States with a

population that is largely Caucasian, Asian, and Hispanic. This region is also home to Silicon

Valley, the preeminent information technology hub in the world where many high-tech

corporations and start-up companies are housed.

Proximity to the world's preeminent technology hub may influence transitioning CS

teachers' development differently than educators in other regions. For example, living in a

community where news about companies like Facebook and Google are broadcasted on the

evening news may make teachers more aware of the relationship between the content of their

courses and professional computing. As another example, due to an expansive tech community

in this region, volunteers who joined the TEALS program in the San Francisco Bay area may

bring different content knowledge and experiences to the participants' classrooms than volunteers

in other regions of the country.

Table 3.1

Professional Development Stage
 Volunteer-led Collaborative Teacher-led
Teacher Ms. Robinson Ms. Jones Mr. Miller Ms. King Mr. Edwards Mr. Perez
TEALS Course AP Intro Intro AP AP Intro
Year in TEALS 2 3 2 2 4 2
Volunteers 4 4 2 2 2 2

www.manaraa.com

116

County San Francisco San Mateo Santa Clara

Median
Household
Income

$75, 000 $88, 000 $91, 000

25 years or
older
w/Bachelor’s
degree or higher

52% 44% 47%

Language other
than English
spoken at home

45% 46% 51%

Figure 3.2. San Francisco Bay Area counties represented in case studies. Sources: U.S. Census
Bureau (2015), Bay Area Council Economic Institute (2012).

Figure 3.3. Race within San Francisco Bay counties represented in the case study. Totals exceed
100% because Hispanics may be of any race and are also included in applicable race categories.
Asian includes Asian, Native Hawaiian, and Pacific Islander. Source: U.S. Census Bureau (2015)

www.manaraa.com

117

3.3.4. Schools

Each teacher worked at a different school and there were two schools within each of the

counties listed above. The demographic profiles of each school differed from the demographic

profiles of the counties within which the schools resided. At both schools within San Francisco

county, students identifying as Asian represented more than 55% of the student population. In

both San Mateo county and Santa Clara county, the largest ethnic group at one school identified

as Caucasian and the largest ethnic group at the second school identified as Hispanic. The

percentage of students receiving free or reduced lunch and per-pupil expenditures also varied.

The percent of students receiving free or reduced lunch ranged from about 15% to 65%

(“Common Core of Data,” 2016) and per-pupil expenditures ranged from about $8,000 to

$13,000. As a point of comparison, the average per-pupil expenditure in the U.S. in 2013 was

$11,841 (K. Park, Hurt, Fisher, & Rost, 2016). Table 3.2 summarizes school information by

teacher.

3.4 Data Collection Procedures

This case study focuses on the PCK and instructional responsibilities of teachers

transitioning into CS classrooms. Selecting methods to explore PCK requires attending to the

nature of teacher knowledge. Hashweh (2005) described teacher knowledge as units that are

private and personal, content-specific, event-based and story-based, and developed through

Table 3.2

School Profiles by Teacher
Teacher Mr. Miller Mr. Perez Ms. King Mr. Edwards Ms. Jones Ms. Robinson
County San Francisco San Francisco San Mateo San Mateo Santa Clara Santa Clara
Free/reduced
lunch eligible

65% 60% 17% 49% 16% 54%

Per-pupil
expenditure

$9, 000 $9, 000 $10, 000 $10, 000 $13, 000 $8, 000

www.manaraa.com

118

repeated experiences of planning and teaching particular topics. Kagan (1990) noted that teacher

knowledge is sometimes stored in metaphors, can reside at an unconscious level, and may not be

describable by teachers. Ball (1988) commented on the challenges of inferring teaching

knowledge from teacher action because the ability to perform tasks does not guarantee complete

or explicit understanding of those tasks nor does the inability to explain solutions always imply a

lack of understanding. Given the often tacit and multifarious nature of teacher knowledge,

researchers attempting to elicit PCK need to employ multiple methods and ask teachers to

articulate their knowledge (Baxter & Lederman, 1999).

Questionnaires, interviews, and observations were the primary data sources used in this

study. These data sources were designed to elicit experiences related to the planning, enactment,

and reflection of teachers’ lessons. Observations were included given limitations with using self-

reported data of teaching practices identified in the literature (e.g., differences in how teachers

and researchers understand practices). Towards the end of the study, questionnaires were

introduced to address two gaps identified in the primary data sources. First, the data collected

from teachers related to the specific content covered during observed lessons. Towards the end

of the study, there was no one topic that all teachers covered during the visits. A questionnaire

focused on a common topic of which I expected all participants to have some degree of

knowledge and experience was added to allow for more comparison across teachers. Second,

beliefs about teaching and learning continued to surface in discussions with teachers when they

explained their rationale for certain actions. Since this topic was not explicitly included in the

study instruments, I included a short questionnaire about epistemological beliefs. Lastly, a

background questionnaire and content assessments used in the main study were also included.

www.manaraa.com

119

This study spanned an entire school year, beginning in September 2015 and ending in

June 2016. Data gathering centered around visits, or a collection of activities related to one

classroom lesson. Visits were centered around particular lessons so that participants could draw

on their recent experiences when responding to questionnaires and interviews. Visits were

spaced approximately a month apart so that I could capture data about participants teaching

different topics. Three visits were conducted during the first semester and another three visits

were conducted during the second semester. Towards the end of the second semester, one visit

was conducted in each teacher’s main subject area to provide a comparison against their CS

teaching. Table 3.3 provides a description of the activities involved in a case study visit.

Table 3.3

Case study visit activities
Visit Activity Description
Scheduling Observer and teacher arrange a date for the observation.
Pre-lesson questionnaire Teacher completes pre-lesson questionnaire online.
Interview selection Observer and researcher review pre-lesson questionnaire

responses to identify which interview to use.
Classroom observation Observer attends one class session and completes observation

protocol. Observations lasted from 50 minutes to 90 minutes.
Interviews Observer interviews teacher in person directly after the

observed lesson. If the teacher is unavailable directly after the
lesson, the observer interviews the teacher either in person or
on the phone later in the day or on the following day.
Interviews are audio recorded.

Post-lesson questionnaire Teacher completes post-lesson questionnaire online.
Visit write-up Observer compiles all the data gathered from the visit and

completes a post-visit form.
Review of visit write-up Researcher reviews the observer’s write-up and works with

observer to clarify any issues.

Study data was gathered from eleven different data sources, which will be described later

in more detail. Some data sources were collected across the entire year, others were used either

www.manaraa.com

120

in the first semester or the second semester, and the rest were administered at either the very

beginning or very end of the school year (see Figure 3.5). The pre-lesson questionnaire, post-

lesson questionnaire, main study questionnaire, and main study assessment were administered

through online survey tools. Most interviews were conducted in person at each participant’s

school directly after an observation. When teachers were not able to meet with observers directly

after their lessons, they were interviewed later either at the participant’s school or on the phone.

All interviews were audio recorded. Teachers received the PCK questionnaire and teaching

beliefs questionnaire over email and returned their responses over email. Lastly, observation

protocols were completed either on paper or on a computer, depending on the observer’s

preference.

 2015 2016
Data Source Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun.

Observation Protocol I
Observation Protocol II
Pre-lesson Questionnaire
Post-lesson Questionnaire
PCK Questionnaire
Beliefs Questionnaire
Lesson Reflection Interview
Think-aloud Interview
CoRe Reflection Interview
Main study questionnaire
Main study assessment

Figure 3.5. Data source collection timeline.

Three observers assisted me in collecting data for the case study and each observer was

responsible for collecting data from one or two participants. I was responsible for collecting data

from Ms. King and Mr. Edwards. To help me understand the data gathered from the other four

participants, I joined the observers for one visit with Ms. Robinson, Ms. Jones, Mr. Miller, and

Mr. Perez. All three observers were also involved in data collection during the 2014-2015 school

www.manaraa.com

121

year and were familiar with the case study methods, data sources, and participants when this

dissertation study began.

Although I created a preferred procedure for the case study tasks, there were some

deviations to the procedure. First, three teachers did not complete all activities. Mr. Edwards did

not complete two post-lesson questionnaires, the PCK questionnaire, the beliefs questionnaire, or

the main study tasks. I gathered some of this missing information during interviews with Mr.

Edwards. Ms. Robinson did not complete one post-lesson questionnaire or the observation and

interviews for her math visit. Mr. Perez did not complete the pre-lesson questionnaires, post-

lesson questionnaires, or most of the interviews for his last CS visit and his math visit. He also

did not complete the PCK questionnaire or the beliefs questionnaire. While he did complete both

main study tasks, he was mistakenly given the content assessment for the AP course instead of

the Intro course. Second, I tested the CoRe reflection interview with Ms. King and Ms. Robinson

during the first semester which replaced their think-aloud interviews. So, these teachers only

completed two think-aloud interviews while all other teachers completed three. Figure 3.6

summarizes the data collected from each participant.

Data Source Mr.
Edwards

Ms.
Jones

Ms. King Mr.
Miller

Mr.
Perez

Ms.
Robinson

Observations 7 7 7 7 7 6
Pre-lesson Questionnaires 7 7 7 7 5 7
Post-lesson Questionnaires 5 7 7 7 5 6
PCK Questionnaire No Yes Yes Yes No Yes
Beliefs Questionnaire No Yes Yes Yes No Yes
Lesson Reflection Interviews 7 7 7 7 6 6
Think-aloud Interviews 3 3 2 3 3 2
CoRe Reflection Interviews 4 4 5 4 2 4
Main study questionnaire No Yes Yes Yes Yes Yes
Main study assessment No Yes Yes Yes Yes Yes

Figure 3.6. Data accounting sheet. Cells highlighted in red indicate missing data.

www.manaraa.com

122

3.5 Data Sources

3.5.1. Pre-lesson Questionnaire

A seventeen-item pre-lesson questionnaire was created to probe teachers about their

feelings of comfort, feelings of preparedness, and teaching knowledge for an upcoming lesson.

Most questionnaire items were drawn from Loughran, Mulhall, and Berry’s (2004) interview tool

named CoRe (Content Representation) which prompts small groups of teachers to discuss PCK

related to big ideas in a domain (e.g., ecosystems in science). The CoRe was developed over the

course of two years through interviews and observations with more than 50 high school science

teachers. A subset of CoRe items is listed here:

• What you intend students to learn about this idea

• Why it is important for students to know this

• Difficulties/limitations connected with teaching this idea

• Teaching procedures (and particular reasons for using these to engage with this

idea)

Since I converted the interview prompts into a questionnaire format, I modified the CoRe

in three ways for the present study. First, prompts were rephrased as questions given that

teachers would read the items alone without someone present to explain the prompts. Second, the

focus of the questionnaire shifted from a “big idea” selected by participants to the learning

objective for a given class period. Given the various goals of classroom lessons (e.g., learn new

content, complete an assignment, research a topic), I replaced the CoRe prompt about assessing

student learning with ‘how will you know if this lesson is a success’. And third, teachers

completed the pre-questionnaire individually and not in groups, which might have influenced the

www.manaraa.com

123

level and type of detail provided in their responses. I also included four additional items on the

questionnaire. Two close-ended items asked teachers about their level of comfort and

preparedness for their current units. To gauge teacher’s perceptions of CS content, another close-

ended item asked about the difficulty of the given learning objective compared to other topics in

the course. Lastly, given the role of programming environments in the TEALS courses, an item

was included asking about the technologies used in the given lesson. This questionnaire also

gathered details about lessons that helped in planning observer visits. The complete pre-lesson

questionnaire is included in Appendix A.

3.5.2. Post-lesson Questionnaire

A fourteen-item post-lesson questionnaire was created to gather teachers’ reflections on

their observed lesson and details about their co-teaching. Items focused on methods teachers

used to prepare for class and instructional resources used during the lesson. Most items were

drawn from the Horizon Inside the Classroom Interview Protocol(Weiss, Pasley, Smith,

Banilower, & Heck, 2003). This protocol was developed as part of the Looking Inside the

Classroom study that captured portraits of science and mathematics instruction across the U.S

from 364 teachers across 31 elementary, middle, and high schools. Given that teachers can gain

PCK through informal exchanges with fellow teachers (Desimone, 2009), I also included an item

asking teachers for advice they would offer to someone teaching the topic the first time. The

second half of the questionnaire asked about the responsibilities undertaken by the teacher and

volunteers and the impact of co-teaching on classroom instruction. The post-lesson questionnaire

is included in Appendix B.

www.manaraa.com

124

3.5.3. Lesson Reflection Interview

The lesson reflection interview consisted of two main prompts, one focused on the lesson

and one focused on the co-teaching model (see Appendix C). Each main prompt also contained

probing questions. Several probing questions related to the lesson prompt were adapted from

protocols used by Niess, Lee, Sadri, and Suharwoto (2006) to interview mathematics teachers

about the development of their TPCK after attending a summer professional development course.

Probing questions focused on how the lesson supported students, unexpected occurrences, and

revisions for future implementations of the lesson. Three probing questions related to the co-

teaching model were also included. These items focused on the quality of the co-teaching

experience, the roles assumed by teachers and volunteers, and the effectiveness of the model in

preparing teachers to lead the lesson independently.

3.5.4. Think-aloud Interview

Ten think-aloud interviews were created to provide teachers with scenarios that might

evoke memories of recent pedagogical experiences and drive discussion about their PCK. The

development of the interviews consisted of: (1) identifying types of prompts to include, (2)

aligning prompts to curricula, and (3) designing prompts to reflect situations encountered in

classrooms. Details on each step are described below.

Three types of prompts were selected for the interviews: assessment, student work, and

instructional materials. Assessment prompts asked participants to review three items and decide

which should be included on an exam. This prompt type was borrowed from Davis (2004), who

used a similar technique to explore science teachers’ content knowledge. Student work prompts

asked participants to review student solutions to a programming problem. This prompt type was

www.manaraa.com

125

modified from an activity created by Hazzan, Lapidot, and Ragnois’ (2011) to support CS

educators in examining programming tasks that can be solved in a variety of ways. Instructional

materials prompts asked participants to watch and critique a video that presented an explanation

of a CS topic. After each prompt, teachers were asked to discuss how their own students might

respond to the items. The interview prompts are presented in Appendices D, E, and F.

After selecting prompt types, I focused on aligning interviews with topics covered in the

AP and Intro courses. I reviewed TEALS curricular guides and identified one topic for each unit

to address in the interviews. To coordinate interviews with recent classroom experiences,

teachers were asked to identify the topic of their lessons a few days before a case study visit and

observers selected the prompt whose topic most closely related the focus of the lesson.

I also focused on designing tasks that might simulate teachers’ everyday experiences.

While designing assessment prompts, I drew on a classification of twelve question types used in

CS teaching (Hazzan et al., 2011) to vary the types of items presented in each interview. For

example, the assessment prompt shown in Figure 3.7 includes items that ask students to

transform a solution (item 1), trace a solution (item 2), and complete a given solution (item 3).

For student work prompts, I incorporated items reflecting common misconceptions. For example,

the prompt shown in Figure 3.8 reflects common difficulties students have with loops including

confusion with nested loops (solution 1), assuming the entire for loop statement is executed

before the for loop body (solution 2), and confusing comparison operators (Götschi, Sanders, &

Galpin, 2003). Lastly, I reviewed recommended course textbooks, AP CS A practice exam

guides, a repository of assessments created by prior TEALS participants, and assessment

www.manaraa.com

126

instruments developed by a project advisor. Some interview items were borrowed and modified

from these materials while I created others.

Item 1
Rewrite the following script using one list
to represent the notes:

Item 2
Create a tracing table to show the value of

, , and
after each block is called in the following
script:

Item 3
Your friend is trying to write a script that checks if the word ‘cantaloupe’ exists in a list of
fruits, and, if so, changes the sprite’s costume.

Which of the following blocks could your friend use in the if block to make the script run
correctly? Select all the blocks that could work.

a)
b)
c)

Figure 3.7. Think-aloud assessment prompt.

www.manaraa.com

127

The following code simulates a counter that goes from 0 0 to
1 9. Rewrite this code using for loops.

 int num1 = 0;
 int num2 = 0;

 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);

 num1 = 0;
 num2 = num2 + 1;

 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);

Solution 1

for (int num2 = 0; num2 <= 1; num2++){
 System.out.println(num2);
}
for (int num1 = 0; num1 <= 9; num1++){
 System.out.println(" " + num1);
}

Solution 2

for (int num2 = 0; num2 <= 1; num2++){
 num2 = num2 - 1;
 for (int num1 = 0; num1 <= 9; num1++){
 num1 = num1 - 1;
 System.out.println(num2 + " " + num1);
 }
}

Solution 3

for (int num2 = 0; num2 < 1; num2++){
 for (int num1 = 0; num1 < 9; num1++){
 System.out.println(num2 + " " + num1);
 }
}

Figure 3.8. Think-aloud student work prompt.

www.manaraa.com

128

3.5.5. CoRe Reflection Interview

At the end of the first semester, I reviewed the pre-lesson questionnaire data and noticed

variation in the level of detail provided in teachers’ responses. Some participants provided clear

and detailed responses while others occasionally provided terse or ambiguous comments. Since

most teachers had been vocal in their interviews, I decided to explore their pre-lesson

questionnaire responses through interviews during the second semester. Starting in the second

semester, teachers still completed the pre-lesson questionnaire and I reviewed their responses to

see which items might require further explanation. During the interview, teachers were reminded

of their responses to the selected items and asked to provide more details about their comments.

The CoRe reflection interviews replaced the think-aloud interviews during the second

semester. One potential drawback to this change is that I did not capture think-aloud interview

data when some participants were starting to assume more instructional responsibility in their

classrooms and when, presumably, course content became more complex. These changes in

context may have influenced PCK development differently than first semester experiences and

resulted in different outcomes during the think-aloud interviews.

3.5.6. Observation Protocol I

During first semester classroom visits, observers made jottings to describe the type of

activities happening (i.e., direct instruction, student work time, assessment, and exam

preparation), the responsibilities undertaken by the teacher and volunteers (i.e., leading class and

assisting students), and the teaching practices used (i.e., interpret student productions,

demonstrate solutions, describe approaches to solve problems, provide justification for solutions,

justify the importance of a topic, make use of metaphor or stories, and assess whole class

www.manaraa.com

129

learning). At the end of the observations, observers completed a form indicating (a) the presence

of each activity, instructional responsibility, and teaching practice, (b) the amount of class time

each item occurred, and (c) whether the item was performed by the teacher or a volunteer. The

observation recording sheet (see Appendix G) was adapted from Goss, Powers, and Hauk’s Case

Study Teaching Observations: Recording Sheet (2013) and Park and Oliver’s PCK Evidence

Reporting Table (2008).

3.5.7. Observation Protocol II

The observation protocol was modified at the end of the first semester to better reflect the

activities of computer science classrooms and to address issues related to capturing activities in

the moment (see Appendix H). First, activity type and instructor responsibilities were

reorganized into two categories: instructional activities and classroom activities. Instructional

activities focused on teacher-led activities and included direct instruction, initiate-response-

evaluate sequences, instructional conversations, and non-content related activities. Classroom

activities focused on individual student work time, student group work time, assessment, lab time

at computers, and AP exam preparation. Second, due to difficulties in determining teaching

discourse moves during live observations, the teaching practices section of the protocol was

changed from a focus on what instructors were saying to who was speaking, to whom, and with

which discourse moves. These changes were inspired by research on PCK in science education

(e.g., Carlsen, 1987; Schneider & Plasman, 2011) that has shown a relationship between the

amount of conversational control teachers give to students in class and the teacher’s confidence

and content knowledge. Three new categories were used on this version of the protocol: voices in

the room (i.e., student, teacher, volunteer), interactions (i.e., between students, between student

www.manaraa.com

130

and teacher, between student and volunteer, and between teacher and volunteer), and classroom

discourse (i.e., pose questions, respond to questions, provide explanations). Lastly, to increase

the accuracy of the observation reports, observers completed the protocol form for each six-

minute classroom segment, instead of once at the end of the observation. Changes in the

observation protocol restricted the comparisons I could make across semesters to two types of

instructional activities (i.e., teacher-led activities and student-instructor interactions).

3.5.8. PCK Questionnaire

Evidence gathered from the aforementioned data sources centered around specific

lessons, whose topic and format varied based on teacher availability, course, and time of school

year. The variability in observed lessons provided an authentic view into teachers’ daily practice

but complicated a comparison across cases. To facilitate more cross-case analysis, I asked

participants to complete the same task designed to elicit knowledge about student understanding

and teaching strategies for specific topics (see Appendix I). The task contained three prompts:

1. List the difficulties students have with linear data structures (i.e., arrays and lists in AP,

lists in Intro). For each difficulty: provide a description of the difficulty, indicate the

frequency with which you see the difficulty when teaching, and describe how you address

the difficulty. List as many difficulties as you can.

2. List all of the types of lessons and activities you would plan around linear data structures.

For each lesson/activity: provide a description of the lesson/activity, describe your

rationale for using the lesson/activity, and describe all the ways you help students who

have difficulty understanding the lesson/activity.

www.manaraa.com

131

3. What are the most challenging topics covered in your course? For each topic, do you

address these topics differently than other topics? If so, how?

Linear data structures were selected as a focus for this task given their difficulty for novice

programmers (Robins et al., 2003), their prolonged appearance in both the Intro and AP

curricula, and their inclusion in multiple case study visits. The last item asks teachers to identify

the most challenging topics in their courses. Topics might be conceptually difficult for students

to understand because of their abstractness or because of their interconnectedness with multiple

other topics. As teachers increase their CS teaching knowledge, they should be able to better

distinguish the more difficult course topics from the less difficult topics.

3.5.9. Teaching Beliefs Questionnaire

During both the 2014-2015 and 2015-2016 school years, teachers participating in the

study occasionally made comments reflecting their ideas about the value of learning CS, the

effectiveness of various activities in attracting more diverse students to their courses, and the

impact of course curricula on student motivation. For example, two AP teachers made the

following comments at the end of the 2014-15 school year:

So, teaching to the AP is entirely different than the idea that I want the kids to explore and

have fun and just come away with a love for computer science...So, what I need to do

unfortunately is give them this kind of [practice AP] test with every chapter so that they're

getting the rigor as we go, as opposed to all at the end. (Ms. King, 4/29/2015)

I think what we really need to do at the high school level is get everybody exposed to at

least getting enough experience with coding that they really have a better sense of what it's

www.manaraa.com

132

about, and doing fun activities that are going to get those kids, and the more artsy kids, or

the kids who would never choose to take a computer programing class. That's why I think

the animation is a great place to bring them both together. (Mr. Edwards, 4/10/2015)

Beliefs about teaching and learning are important to consider when examining teaching

knowledge because beliefs can influence instructional decisions (Fang, 1996). While not a

primary focus of this dissertation, teacher beliefs were examined to identify potential

relationships with teaching knowledge.

A subset of items from the Teacher Beliefs Interview (TBI; Luft & Roehrig, 2007) were

administered to participating teachers. The TBI consists of seven items, four focused on beliefs

about learning and three focused on the acquisition of knowledge. The TBI was developed

through a three-phase, iterative process of creating items, testing them with science teachers, and

revising items so that they better elicited responses that were “highly personalized, often

constructed in episodic ways, and contained affective and evaluative components” (Luft &

Roehrig, 2007, p. 42). Over one hundred pre-service, induction, and experienced science teachers

were interviewed during the creation of the TBI. Reliability and validity of the final TBI were

established through interviewing teachers in another domain (i.e., math) and calculating the

internal consistency of the items (α = .70).

The TBI items used in this dissertation were:

1. How do you maximize student learning in your classroom?

2. How do you students learn computer science best?

3. How do you describe your role as a teacher?

4. In the school setting, how do you decide what to teach and what not to teach?

www.manaraa.com

133

The first two items relate to beliefs about student learning and the last two items relate to beliefs

about the acquisition of knowledge. The second item was rephrased to use the term computer

science instead of science.

Three TBI items were excluded from this questionnaire. The teaching beliefs

questionnaire along with the PCK questionnaire were not included in the teachers’ original list of

study tasks. Furthermore, these tasks were introduced at the end of the study year, which is a

hectic time for teachers dealing with their courses and final exams. In order to encourage greater

completion of these two tasks, only half of the TBI items were included.

3.5.10. Main Study Tasks

Teachers participating in the case study were also participating in the main study. As part

of the main study, teachers completed a background questionnaire asking about their educational

and professional background and readiness to teach CS. Teachers and their students also

completed an assessment of the content covered in their courses. Results from these instruments

were used to supplement data gathered from the case study data sources.

3.6 Data Reduction

Data gathered for this study were not all received in a form that facilitates analysis.

Interview data and open-ended questionnaire responses went through a process of data reduction,

which Miles and Huberman define as “the process of selecting, focusing, simplifying,

abstracting, and transforming the data” (1994, p. 10). Data reduction occurs throughout the entire

study process and decisions made about data reduction influence what conclusions can be drawn.

Here I explain the data reduction processes applied to the case study data and how those

processes bound the study conclusions.

www.manaraa.com

134

3.6.1. Interview Transcripts and Unitization

Participants partook in three types of semi-structured interviews for this study: lesson

reflection interviews, think-aloud interviews, and CoRe reflection interviews. The interview data

were transformed to allow for exploration of the knowledge and practices of individual teachers

and for comparison across teachers. First, audio recordings were transcribed by a member of the

WestEd study team. Transcriptions can range from a naturalized1 style that captures details of

how interlocutors talk (e.g., recording overlapping speech, response tokens such as mm hm, or

non-verbal vocalizations such as gesturing) to a denaturalized style that focuses on the substance

of a speaker’s discourse (Oliver, Serovich, & Mason, 2005). I opted for a denaturalized style as I

found it more important to identify, for example, participants’ ideas around strategies to teach

students algorithms than to explore the meaning behind their choice of discourse moves.

Second, I reviewed each transcript to resolve phrases the transcriber could not decipher

and to begin unitizing the interviews. After exploring different methods of unitization, I settled

on the approach of dividing transcripts into chunks of texts that responded to prompts listed on

the interview protocols. I decided on this approach because it made it easier to compare

responses across participants, to summarize which interview prompts each participant received,

and to identify the frequency of questions asked that were not on the protocol. In dividing the

transcripts using this approach, a unit might contain multiple questions. For example, consider

the following excerpt I had with Ms. King:

1 Other scholars use the terms naturalized and denaturalized to mean the opposite of Oliver, Serovich, and Mason’s
(2005) definition. For example, Bucholtz (2000) refers to transcription style that that resembles written text as
naturalized and the transcription style that reflects oral speech as denaturalized.

www.manaraa.com

135

[1] Interviewer: And what did you expect students to walk away with at the end of the

lesson?

[2] Ms. King: I expected that they would then be able to do this worksheet and

understand how do you - which covered all those methods, um, without too much trouble.

That they could figure out what I really didn't know. As opposed to if I hadn't done that

little mini lesson I would have been - hands would have been up all over the class.

[3] Interviewer: And so when you were walking around to give it a check off, it seemed

like they were getting it?

[4] Ms. King: Yes so when I was checking off, so some people were working on their

code. Other people were definitely working on their worksheet. Now the people who

were behind in their code are also the people who have a harder time with the worksheet,

so there's always that some kids are taking three times as long as others, or four days

more to finish things, and it's, it's a little bit troubling to try to not let the ones who are

ahead get bored, and not to have too many assignments lined up, because then you start to

panic, the kids start to get confused.

This entire excerpt was grouped into one unit. In line [1] I pose a question from the interview

protocol. In line [3] I ask a question to clarify her response from line [2]. While line [3] was a

separate question, I treated it as a continuation to the exchange in lines [1-2]. It is also important

to note that in the conversational style of a semi-structured interview, there were times when

interviewers asked relevant questions that were not listed on the interview protocol. In these

instances, the questions and the participant’s response were grouped into a unit labeled as

‘other’. The ‘other’ category was not divided into subcategories, but units of this type tended to

www.manaraa.com

136

focus on clarification questions, specific events observed during the classroom visit, and final

thoughts shared after all protocol questions were asked. There were also instances, particularly in

think-aloud interviews, where participants would respond to multiple prompts in the same

response. In these instances, the question and the participant’s response was grouped into a unit

labeled as ‘multiple’. Lastly, most transcripts included two interviews, both the lesson reflection

interview and either a think-aloud interview or a CoRe reflection interview. While these

interviews were contained in the same transcript file, they were treated as two separate

interviews.

As a final step in data reduction of the participant interviews, I tagged the transcription

files with metadata to describe both the interviews and the individual units within them. This

tagging process was also applied to the pre-lesson questionnaires and the post-lesson

questionnaires. The metadata scheme I adopted is based on the TAMS scheme used in the

qualitative software tool called TAMS Analyzer (Weinstein, 2006). I included a header tag at the

start of each file that listed: the file name, the data source type (i.e., interview, pre-lesson

questionnaire, or post-lesson questionnaire), the teacher’s course (i.e., AP, Intro, or non-CS), a

numeric identifier associated with the teacher, participant’s role (i.e., teacher or volunteer),

month of the school year with August as month 1, year of the WestEd study (i.e., year 2 for this

dissertation work), visit number, coding date, and either the name of the coder or phase of

interrater coding (i.e., training, agreement, reliability). Next, the start of each interview was

labeled with a tag to identify the specific data source (e.g., lesson reflection interview, think-

aloud interview). Within an interview, each unit was prefaced with tags to indicate their

sequence in the interview and a label for the prompt or question to which participants responded.

www.manaraa.com

137

Units that were coded for analysis included two additional tags to contain the codes applied to it

as well as comments from the coder. Figure 3.9 shows an example of the metatags applied to a

lesson reflection interview and a think-aloud interview conducted during the same session.

Tagging the interview and lesson questionnaires using this metadata scheme made it easy

to process the files using pattern matching techniques and to tabulate units, codes, and interrater

reliability. With numerous qualitative data analysis software available (e.g., TAMS Analyzer,

NVivo, HyperResearch), readers may wonder why I opted to avoid these tools and simply apply

a metadata scheme to text files. Two reasons motivated my decision. I found the effort required

by the coding team to learn the intricacies of each tool required a lot of effort and reduced the

amount of time available for actual coding. Second, each tool provides its own methods of

retrieving and summarizing information from the data files and were sometimes restricted to

specific operating systems. By using text files, the coders could easily manipulate files on any

machine and edit them collaboratively if needed. While there was some time invested on my part

to create the metadata scheme and to create programming scripts to prepare and process files,

this effort seemed to outweigh the disadvantages of using an existing software package.

www.manaraa.com

138

Figure 3.9. Metatags applied to transcription and questionnaire files. ## indicates a number used
to identify the teacher.

www.manaraa.com

139

3.6.2.Questionnaire Item Selection

Another form of data reduction is selecting a subset of collected data to include in

analysis. After reading and rereading responses provided on the pre-lesson questionnaires and

the post-lesson questionnaires, I decided to exclude certain items because they did not contribute

much analytic power to my understanding of the participants’ PCK or instructional practices

specific to CS (see Tables 3.4 and 3.5). First, I excluded items that tended to elicit descriptions of

lesson topics, progress through the curriculum, or tools used in the classroom without mention of

student learning or impact on teaching. These excluded items were items 9 and 15 on the pre-

lesson questionnaire and items 7 and 10 on the post-lesson questionnaire. The following list

provides examples of typical responses to these items:

• We've finished the basic constructs of Strings, if/else, loops. We haven't done arrays yet

• We are using Java because that is what AP CS teaches.

• Traditional paper notes accompanied by a visual lesson using Snap!

Table 3.4

Pre-lesson Questionnaire Open-ended Items Included in Analysis

Items Included Excluded
6 What is learning objective of this specific lesson? X
7 Why is it important for students to know this? X
9 Where does this lesson fit in the sequence of the unit you are working on?

What have the students experienced prior to the lesson? What will they
learn after the lesson?

 X

10 What else do you know about this idea that you do not intend students to
know yet?

 X

11 What are the difficulties or limitations connected with teaching this topic? X
12 What do you know about students’ thinking that will influence your

teaching of this topic?
 X

13 What other factors will influence your teaching of this topic? X
14 What teaching procedures will (would) you use to engage with this topic

and why?
 X

15 What technology will (would) you use to engage with this topic and why?
(e.g., programming languages, programming environments, visualizations)

 X

16 How will you know if this lesson is a success? X
17 Is there anything else you would like to share about the lesson I will

observe?
 X

www.manaraa.com

140

Second, I excluded items that tended to elicit descriptions of general pedagogical

knowledge and practices that might apply across domains, such as ideas related to lesson

planning or factors affecting learning not specific to CS. These were items 4 and 16 on the pre-

lesson questionnaire and items 8, 9, and 10 on the post-lesson questionnaire. The following list

provides examples of typical responses to these items:

• I have already introduced the overview. At this point we will look at more examples to

deepen students understanding

• If the students are engaged and not just filling in anything.

• I will like to see students successfully complete the project.

• Gave the students more practice than they would have had doing a couple of coding

exercises.

• Some students work ahead on the worksheet, getting it wrong as they ignore the lesson.

Giving the examples as notes would prevent that, but have other issues.

• Taking paper notes may seem boring sometimes.

Table 3.5

Post-lesson Questionnaire Open-ended Items Included in Analysis
Items Included Excluded
What was the main topic of this lesson? X
How did you prepare to teach this topic? X
What additional preparation do you need to teach this topic again? X
What advice would you offer someone teaching this topic for the first time? X
What resources were used to plan this lesson? X
How did these resources support instruction and learning? X
How did these resources hinder instruction and learning? X
Will you plan another lesson to revisit the topic(s) covered today? / Please
explain why or why not.

 X

How did the co-teaching model used during today’s lesson support and/or
hinder instruction and learning?

 X

How did the co-teaching model used during today’s lesson support your
development as a computer science high school teacher?

 X

Is there anything else you would like to share about the lesson I observed? X

www.manaraa.com

141

I also excluded optional questionnaire items (i.e., item 17 on the pre-lesson questionnaire and

item 14 on the post-lesson questionnaire). More than half (60%) of the responses to these two

items were of the form ‘No, I have nothing else to add.’ The remaining responses were mostly

affective comments (e.g., ‘I was proud of my students’) or additional details about lesson

sequencing or content. Lastly, I also excluded two post-lesson questionnaire items that asked

teachers to describe the impact of the co-teaching model on student learning, instruction, and

their own development (i.e., items 12 and 13). Several (30%) of the responses to these two items

were of the form ‘N/A’ or ‘no volunteer present’. Most other responses described the co-teaching

model used; information about the co-teaching implementation was captured more consistently

with closed-ended items on the post-lesson questionnaire. Also, participants were asked about

their co-teaching implementation during interviews, which tended to elicit more detailed

responses than those provided on post-lesson questionnaires.

In excluding these items from analysis, I may have lost some insightful information about

participants’ CS PCK development. However, given the infrequency of comments about their CS

PCK or their CS related instructional practices on these items, I decided to focus on other items

that seemed to elicit richer responses. While I did not systematically analyze these items, I did

review them to better understand the classroom contexts within which participants taught.

3.6.3. Observation Protocols

Another layer of data reduction occurred during classroom observations. Our study did

not include consent to video record classrooms so I had to rely on observers to take field notes

and interpret teacher, volunteer, and student actions in the moment. Also, observers conducted

their observations independently, limiting the amount of classroom action they could focus on

www.manaraa.com

142

while writing their notes. To mitigate some of the limitations with conducting observations in

this manner, I introduced processes to help observers capture their notes systematically.

Observers divided classroom lessons into six-minute segments. During each segment,

they spent the first three minutes watching the classroom and the remaining three minutes

recording their notes. In the recording phase, they focused on their jottings and not on

completing the checkbox portion of the observation protocol. Observers filled out the checkbox

portion of their protocols after each visit. Also, after testing the observation protocol during the

2014-2015 school year, I narrowed the number of categories of classroom discourse moves and

activity types to focus on actions that required little interpretation on the part of the observer

(e.g., observers found it easier to note when a teacher was asking a question than to decide if a

discourse move should be categorized as a metaphor or a justification).

This approach to reducing classroom observations into a standardized protocol form was

not without its limits. First, given observers’ varying levels of computer science knowledge and

the fast pace of classroom dialogue, we did not focus on the accuracy of teachers’ remarks

during the observations. So, our observations provide more information about the frequency of

classroom activities and less detail about the quality of those activities. Second, with only one

observer present in the classroom it was not possible to record every interaction that occurred,

especially during lab sessions where students worked at individual computers and instructors

circulated the room to answer questions. So, each observation can only be viewed as an

approximation of the activities that occurred during our visits.

www.manaraa.com

143

3.7 Data Analysis

3.7.1. Interviews and Open-ended Questionnaire Items

Each interview and open-ended questionnaire item was analyzed to identify instances

when participants discussed pedagogical content knowledge, content knowledge, instructional

responsibilities, or their own growth as a teacher. I identified types of knowledge and

responsibilities to use in my coding scheme through a review of literature on PCK drawing

heavily on the work of Shulman (1986) and Ball, Thames, and Phelps (2008). The coding

scheme went through multiple iterations, particularly around ways to capture teachers’ actions in

the classroom. The final coding scheme contains three main categories: CS teaching knowledge,

instructional responsibilities, and other. CS teaching knowledge describes knowledge of CS

content and problem solving, knowledge of students, and knowledge of instructional practices.

Instructional responsibilities describes some of the activities teachers engage in when planning

and delivering their lessons. Lastly, the other category captures instances where teachers either

talk about their own development or do not mention ideas captured by other codes. The coding

scheme is listed in Table 3.6. Teachers often discussed multiple ideas in one unit and since I was

interested in capturing the breadth of ideas shared, each unit could receive multiple codes. Code

counts were tabulated per teacher to identify the percentage of units containing each subcategory,

each major category, and a co-occurrence of a knowledge category and a responsibility category.

The coded interview and questionnaire data were used to supplement other analyses and to

explore the relationship between PCK and instructional responsibilities.

www.manaraa.com

144

3.7.2. Closed-ended Questionnaire Items

Two closed-ended items were analyzed to determine teachers’ feelings of comfort and

preparedness with the units covered in their classes during case study observations. Teachers

responded to these questions on each pre-lesson questionnaire selecting among three levels of

comfort or preparedness (i.e., not at all, somewhat, and completely). I converted these levels into

numeric values (i.e., -1, 0, and 1) in order to average feelings of comfort and preparedness over

the school year. Six closed-ended items were also analyzed to determine who engaged in

Table 3.6

Coding Scheme Used with Interviews and Open-ended Questionnaire Items
Category Definition
CS Teaching Knowledge
 Content Knowledge

 Computing Topics Teacher’s understanding of specific CS topics (not
knowledge of the field)

 Methods for Solving Problems Teacher’s ability to solve CS problems
 Pedagogical Content Knowledge

 Student Understanding and
Difficulties

 Knowledge of students’ ideas and misconceptions about CS

 Student Interest and Motivation Knowledge of student interest and motivation related to CS
 Representations and Methods Knowledge of how topics are represented and how topics can

be presented to learners
 Timing, Pacing, and Sequencing Knowledge of how topics should be organized to support

learners
Instructional Responsibilities
 Plan and Organize Lessons

 Find materials Search for and evaluating instructional materials
 Create materials Create instructional materials

 Modify materials Modify instructional materials created by others
 Review materials Look over existing instructional materials
 Practice materials Complete tasks that will be assigned to students
 Organize lesson Decide on the timing, pacing, sequencing of lessons; Decide

on student grouping for group work
 Implement and Monitor Instruction
 Assist students Provide help to students

 Evaluate learning Assess students, assign grades, review student progress

 Present ideas Present CS information, give CS explanations, whole class
instruction

Other
 Self Discussing one’s effectiveness as a teacher
 None No evidence of other coding categories is present

www.manaraa.com

145

instructional responsibilities on each teaching team. Teachers responded to these items on each

post-lesson questionnaire selecting among four degrees of involvement (i.e., no one, mostly

volunteers, both volunteers and teachers, and mostly teacher). I converted these levels into

numeric values in order to average engagement in instructional responsibilities over time. Since I

was most interested in the degree to which teachers assumed instructional responsibilities, I

collapsed the levels of no one and mostly volunteers to a value of 0, assigned both volunteers and

teachers a value of 1, and assigned mostly teacher a value of 2.

3.7.3. Observations

Observation data was used to provide another perspective on the instructional

responsibilities assumed by teachers and to paint a portrait of the types of activities implemented

in the teachers’ classrooms. The observation protocol data was used to calculate the percentage

of class time teachers and volunteers devoted to delivering instruction, assisting students, and

various discourse moves. Due to changes in the observation protocol between the first and

second semesters, I only included the observation protocol categories gathered across the entire

school year. Percentages of delivering instruction and assisting students were compared against

teachers’ self-reported questionnaire items. Questionnaire data were deemed in agreement with

observation data if (a) a teacher indicated mostly volunteers and the observer noticed volunteers

performing the responsibility a greater percentage of class time than the teacher, (b) a teacher

indicated both teacher and volunteers and the observer noticed both members of the instructional

team performing the responsibility during class time, or (c) a teacher indicated mostly teacher

and the observer noticed the teacher performing the responsibility a greater percentage of class

time than volunteers.

www.manaraa.com

146

3.7.4. PCK Questionnaire

The PCK questionnaire was used to analyze teaching knowledge about the concept of

linear data structures and the most difficult topics in teachers’ courses. I analyzed the quantity

and type of ideas participants shared about teaching linear data structures. Since little research

exists describing expert computer science teaching knowledge, I also compared these responses

against publicly available data sources gathered from experienced computer science educators

who completed similar tasks. This comparison allows for a heuristic analysis of participants’

teaching knowledge proficiency by exploring its similarity to the knowledge of experienced

teachers. These comparison sources were an online repository of computer science teaching tips

(http://csteachingtips.org) and workshop discussions in response to Loughran, Mulhall, and

Berry’s CoRe instrument for multiple computing topics (Saeli et al., 2010).

3.7.5. Teaching Beliefs Questionnaire

To better understand the beliefs of the case study participants, I asked each teacher to

answer four open-ended items about their epistemological beliefs drawn from Luft and Roehrig’s

Teacher Beliefs Interview (2007). Luft and Roehrig identified five categories of beliefs (i.e.,

traditional, instructive, transitional, responsive, and reform-based) that were used to code

participants’ responses. Given ambiguity in the terms responsive and reform-based as defined by

Luft and Roehrig and as defined by other teacher learning literature, I replaced the terms with the

categories of interactive and responsive. I drew on sample responses provided in Luft and

Roehrig (2007) and the Salish I Research Project (1997) to determine the most appropriate

category to apply to each response. Responses could receive multiple codes if teachers expressed

more than one idea in their comments. Interview data were used to supplement their responses

www.manaraa.com

147

and to glean the epistemological beliefs of Mr. Edwards and Mr. Perez who did not complete the

questionnaire.

3.7.6. Content Assessment

Teachers were also asked to complete a multiple choice content assessment as part of the

main study. The assessment was used as a measure of the teachers’ CS content understanding. I

calculated the percentage of items teachers answered correctly and compared their performance

against the average score of students in their classes who also agreed to share their assessment

results with our research team.

3.8 Trustworthiness

Reviewing the procedures and analytic methods of a study can help readers evaluate the

quality of the research and determine the utility of the work for advancing knowledge and

impacting the lives of others. Lincoln and Guba (1985) described four components of

trustworthiness: applicability, neutrality, truth value, and consistency. Applicability concerns the

transferability of findings to contexts beyond the study and can be demonstrated by providing

details about participants and their contexts, threats to generalizability, the scope and bounds of

the study, thick description of the data, and congruency with prior theory (Miles & Huberman,

1994). Neutrality captures the degree of objectivity in a study or how much results are influenced

by research bias. Miles and Huberman (1994) suggest researchers establish neutrality by

describing study methods and results in such detail as to allow for an audit of procedures,

considering alternative hypotheses, explicating their assumptions and biases, and making data

available for others to analyze. In other sections of this chapter I provided details about the

participants and their locales, study procedures, study limitations, and my background that allow

www.manaraa.com

148

the reader to judge the neutrality of this work and its applicability to CS teacher preparation in

other settings. In this section, I focus on the truth value and consistency of this work.

Truth value relates to the credibility of study findings and consistency relates to the

reliability of the study procedures. Creswell (2006) identified eight methods to validate

qualitative research and he recommends studies make use of at least two of these methods:

triangulation, prolonged engagement and persistent observation in the field, clarifying research

bias, rich and thick description, peer review, negative case analysis, member checking, and

external audits. I used triangulation and prolonged engagement in the field to ensure the

credibility and consistency of this study.

3.8.1. Data Source and Method Triangulation

Triangulation is a strategy of corroborating evidence gathered from multiple sources and

methods (Creswell, 2012). Of the four approaches to triangulation (i.e., data source triangulation,

analyst triangulation, theory or perspective triangulation, and methods triangulation), the validity

of case study research can best be strengthened with the triangulation of data sources and

methods (Yin, 2013). As described in the Data Collection Procedures and Data Sources sections

above, I engaged in data source and method triangulation by using different methods (i.e.,

interviews, questionnaires, observations, and assessments) to gather evidence over multiple

months from participating teachers who worked in different school contexts. While these

methods of triangulation helped me to substantiate the patterns that emerged from different data

sources, one case study participant, Ms. Jones, found the redundancy excessive.

Although Ms. Jones completed all requests we made during the study, she once

commented on a questionnaire in December 2015: “I feel like a lot of these questions are

www.manaraa.com

149

repetitive between the pre-observation survey, post-observation survey, and post-observation

interview.” Unlike other teachers, Ms. Jones was a terse participant, so responding to similar

questions across instruments did not tend to elicit more information from her. Also, Ms. Jones

completed the case study tasks promptly; she often completed the post-lesson questionnaire just

before her lesson reflection interview. So, the time between completing the lesson questionnaires

and interviews was much shorter for her than for other participants. I intended the pre-lesson

questionnaire to capture teachers’ intentions related to their upcoming lessons, the lesson

reflection interview to capture teachers’ immediate response to their lesson, and the post-lesson

questionnaire to capture thoughts after having some time to reflect on their day. This redundancy

did not appear problematic for other participants.

3.8.2. Analyst Triangulation

I also incorporated analyst triangulation into this study by involving multiple researchers

in classroom observations and in coding data from interviews and open-ended questionnaire

items. Einsenhardt argues that the use of multiple researchers is advantageous for building

trustworthiness in the study because “their different perspectives increase the likelihood of

capitalizing on any novel insights which may be in the data…[and] convergent perceptions add

to the empirical grounding of the hypotheses, while conflicting perceptions keep the group from

premature closure” (1989, p. 538). However, involving multiple researchers in this study also

required aligning our approaches to gather and analyze data reliably. Next, I describe how this

reliability was established with observers and with coders.

Reliability of Observation Data. Three research staff helped me conduct observations

for this study. All three researchers also participated in the project during the 2014-2015 school

www.manaraa.com

150

year. Given the diversity of the researchers’ backgrounds relative to teaching and to computer

science, I held a two-day training session in early September 2014 the introduced observers to

the larger WestEd study, case study logistics, observation protocol, the PCK framework, and the

two programming languages used in the TEALS courses. Due to delays in study recruitment,

most observers began visiting participating teachers in January 2015, so I held a second training

that reviewed the September 2014 training and also included time for practicing the observation

protocol using a classroom video obtained from TEALS, listening to and discussing excerpts

from two interviews conducted in fall 2014, and a tour of the database used to store study data.

In fall 2015, observers continued classroom observations using a revised version of the

Year 1 observation protocol. Once observers completed a visit and uploaded their notes to our

study database, I reviewed their write-ups to check for missing information, unclear comments,

and observer concerns. Then I met with the observer to discuss and resolve any identified issues.

If the observer and I made any decisions about how to interpret classroom events, I shared these

decisions with other observers. In December 2015, two changes occurred in the study. The

observation protocol was revised (see Observation Protocol II above) and one observer left our

team. So, I held another training session in January 2016 to review the protocol changes and

establish interrater reliability (IRR).

During this training session, we watched nine-minute excerpts of video collected by

TEALS in two different classrooms, completed the observation protocol for these segments,

clarified elements of the protocol that were confusing, and completed the observation protocol a

second time for both nine-minute excerpts. I calculated IRR for our ratings of both the first and

second viewing of the classroom videos using Krippendorff’s alpha reliability coefficient. I

www.manaraa.com

151

selected Krippendorff’s reliability coefficient because it allows for more than two observers, any

number of categories, any level of measurement, and both large and small sample sizes

(Krippendorff, 2011). While there is no definitive agreement on the acceptable ranges of

reliability coefficients, Krippendorff (2012) cautiously suggested a value of at least .67 to draw

reliable conclusions. Krippendorff alpha coefficients typically range from 0 (no correlation in

codes) to 1 (complete agreement), but they can assume negative values “when coders

consistently agree to disagree” (Krippendorff, 2008, p. 7). To simulate our normal observation

conditions, I divided the videos into one-minute segments for a total of 20 segments. After each

minute passed, I paused the video and then we completed the observation protocol form. Table

3.7 presents the alpha coefficients for each category of the observation protocol.

Fourteen categories passed Krippendorf’s suggested threshold value of .67. However,

eleven categories fell below the suggested threshold. Four categories related to voices in the

room and interactions each with α values between -0.01 and 0.45. These categories are rather

straight forward and easy to interpret, so I reviewed each coding choice to identify possible

reasons for the discrepancies in our agreement. Discrepancies related to (a) identifying when we

heard the volunteer’s voice and (b) interactions that occurred during lab time. We watched these

video segments again and identified all the instances where volunteers were speaking or where

students, teachers, and volunteers were interacting. Some of the discrepancies occurred because

some of the audio on the video was unclear. However, this review also highlighted how it is

impossible for one person to focus on multiple interactions happening simultaneously in a

classroom. Disagreement also occurred with categories related to classroom discourse. The α

values for students posing questions, teachers responding to questions, and volunteers

www.manaraa.com

152

Table 3.7

Interrater Reliability for Observer Training
Category Krippendorf’s α
Instructional Segment Type1

Direct Instruction 1.00
IRE 0.63

Instructional Conversation 0.72
Non-content activities 0.76

Classroom Segment Type
Student work time (individual) 0.87

Student work time (groups)2 1.00
Students take assessment2 1.00

Lab time at computers 0.87
AP exam prep2 1.00

Voices in Room
Student 1.00
Teacher 0.83

Volunteer 0.44
Interactions

Student-student 0.41
Student-teacher 0.45

Student-volunteer 0.87
Teacher-volunteer -0.01

Classroom Discourse
Poses question: student 0.59

Poses question: teacher 1.00
Poses question: volunteer 0.82

Responds to question: student 0.82
Responds to question: teacher 0.27

Responds to question: volunteer -0.02
Provides explanation: student 0.47
Provides explanation: teacher 0.58

Provides explanation: volunteer 0.59
1The observation protocol allows observers to indicate whether the teacher or volunteer
performed the specified instructional activity. During IRR, we condensed these options and
simply indicated if any instructor performed the activity.
2These activities were not present during the video segments used for IRR, so Krippendorf’s α
indicates perfect agreement because all observers agreed these activities did not occur.
Note: Bolded items indicate categories that do not pass Krippendorf’s suggested threshold for
acceptable values of agreement.

www.manaraa.com

153

responding to questions were all much lower than the related categories of other actors

performing the same discourse moves. For each of these categories, there were only one or two

segments of disagreement. We reviewed the videos as a team and realized that for each category,

one member on our team miscoded a segment that they thought should have been coded

differently. At the end of our IRR meeting, we felt confident that we could identify the types of

actions that should be coded as containing the volunteer’s voice, interactions between students,

posing questions, and responding to questions. However, we also acknowledged that we might

miss some of these instances, especially when classes engaged in lab time.

All categories of providing explanations received low agreement scores, but for different

reasons. First, for most segments, our team agreed that no student provided an explanation.

However, in one segment, two of us agreed that a student provided an explanation. This one

segment of disagreement amongst a mostly absent category resulted in a low agreement score,

although we felt confident we had a shared understanding of the category. Second, we disagreed

on coding segments where teachers provided explanations because either (a) one observer

thought an explanation spanned across units while others thought it started slightly later in the

video clip or (b) one observer indicated this discourse move during a lab time segment where we

could not hear what the teacher said to the student. Similarly, we disagreed on coding segments

where volunteers provided explanations because either (a) one observer thought an explanation

lasted one unit while others thought it finished in a following unit or (b) one observer thought an

introduction to a lab assignment was an explanation while the others thought it was not an

explanation because it lacked discussion of content. We thought that overlapping segments was a

non-issue because in our real observations, segments would be separated into larger time spans

www.manaraa.com

154

(i.e., 6 mins) where transitions would be more distinct. I also reminded observers not to make

assumptions about actions in the classroom and to only code activities they felt certain they

observed.

One category where we appeared to have a disagreement on the understanding of the

code was instructional segments containing IRE sequences (α = .63). There were two segments

where two observers coded the presence of IRE sequences while the third observer did not. This

discrepancy seemed related to distinguishing IRE sequences from direct instruction. Often, IRE

sequences occurred in the middle of a direct instruction segment. For example, a teacher might

launch a lesson explaining the different ways to initialize arrays, insert an IRE sequence to ask

students how to write each initialization type in Java, and then continue with a live coding

demonstration of creating and using an array. The first observer would only code this

instructional sequence as direct instruction. However, I decided that I also wanted to capture IRE

sequences that occurred within direct instruction sequences and so we agreed as a team to do this

in our observations.

Our classroom observations were limited by the fact that we did not video record lessons

and had to make decisions in the moment about which activities occurred during our visits. I

acknowledge that by using this approach we may not have captured all the activities that

occurred in a classroom, but by observing teachers across multiple lessons we captured a range

of instructional activities and discourse moves used in their classrooms. Our IRR process also

highlighted drawbacks to conducting observations independently and dividing our observations

into segments where activities occurring on segment boundaries could alter frequency counts.

www.manaraa.com

155

Reliability of Coding. One observer also assisted me in coding interview data and

questionnaire data. I invited this observer to join me in the coding phase of the project given our

prior experience coding data together for another study. We began our coding process in April

2016 where we first discussed articles that influenced my initial coding scheme and then we

went through several rounds of trying out coding schemes, calculating IRR, and revising the

coding scheme based on our discussions. The final coding scheme used is shown in Table 3.6

above. Beginning in August 2016, we went through three steps to establish IRR with the final

coding scheme: training, agreement, and reliability.

The goal of the training phase was to review the coding scheme and provide the second

coder with examples of coded units to illustrate the categories of the coding scheme. I selected

six visits from Ms. King, Ms. Jones, and Mr. Miller to use during this phase. Half of the selected

visits occurred during the first semester and the other half occurred during the second semester. I

chose data from these three participants to include data that was both familiar and unfamiliar to

each coder. I worked directly with Ms. King, the second coder worked directly with Ms. Jones,

and neither of us worked directly with Mr. Miller. The training set consisted of 132 units. The

second coder agreed with 69 units (52%) without reservation, but wanted to discuss the

remaining 63 units (48%). She agreed with the original codes applied to 42 of these 63 units, and

disagreed with codes applied to the other 21 units. After discussing these 21 units together, we

decided to maintain the original codes applied to 16 units and to either partially or completely

change codes applied to 5 units. In sum, we agreed with the original codes applied to 111 units

(84%); for units of disagreement, we deferred to my coding choice for 16 units (12%), and we

deferred to the second coder’s choice for 5 units (4%).

www.manaraa.com

156

The goal of the agreement phase was to review data files together and identify how we

would code them, resolve discrepancies in our decisions, and make decisions on how to handle

similar cases in the future. This form of negotiated agreement is useful when conducting

exploratory work and can help to increase IRR (Campbell, Quincy, Osserman, & Pedersen,

2013). I selected two visits from Mr. Edwards to use during this phase, one from September

2015 and one from February 2016. The agreement set consisted of 29 units. We agreed on 24

units (83%) and we reconciled our disagreements with 5 units (17%).

The goal of the reliability phase was to show consistency in our application of the coding

scheme by separately coding a subset of the data and comparing our coding choices using

Krippendorff’s alpha reliability measure. I selected two visits from Ms. Jones and Mr. Perez to

use during this phase. As in the prior two phases, half of the selected visits occurred during the

first semester and the other half occurred during the second semester. I chose data from these

two participants so that each teacher was included in one of the three phases. The reliability set

consisted of 81 units. Fifteen categories passed Krippendorff’s suggested threshold value of .67,

one category fell just below the threshold at α = .66, and one category was never used in the

coding set (see Table 3.8).

www.manaraa.com

157

We then met to review all units of disagreement and agreed how we wanted to code them

and similar units in the future. We then independently recoded the units of disagreement and

recalculated our IRR score. It is important to remember that each unit could receive multiple

codes. Units of disagreement included units where there was no agreement between any of the

applied codes as well as units where we agreed on some codes and disagreed on others. So,

Table 3.8

Interrater Reliability for Coder Training
Category Krippendorf’s α

Round 1
 Krippendorf’s α

Round 2
KNOWLEDGE
Common Content Knowledge

Computing topics 0.75 0.92
Methods for solving problems 0.85 1.00

Pedagogical Content Knowledge
Student understanding and difficulties 1.00 0.91+

Student interest and motivation 0.66 1.00
Representations and methods 0.86 0.93

Timing, pacing, and sequencing 1.00 0.66+
RESPONSIBILITIES
Plan and Organize Lessons

Find materials 0.85 1.00
Create materials 0.71 0.90

Modify materials 1.00 0.66+
Review materials --- ---
Practice materials 1.00 1.00

Organize lesson 1.00 1.00
Implement and Monitor Instruction

Assist students 1.00 1.00
Evaluate learning 1.00 0.79+

Present ideas 0.75 0.82
OTHER

Focus on self as a teacher 0.90 1.00
None 0.87 0.92

+ indicates categories where the α value in round 2 was less than the α value in round 1.
Note: Bolded items indicate categories that do not pass Krippendorf’s suggested threshold for
acceptable values of agreement.

www.manaraa.com

158

during the second round of IRR, it was possible for us to disagree on codes that we agreed upon

during the first round and lower our IRR values. While alpha values generally improved during

the second round of the reliability phase, there were four categories that saw a decrease in

agreement and two of these categories fell slightly below Krippendorff’s suggested threshold

value of .67. Accepting .67 as the minimum value of acceptable agreement, we felt confident we

could consistently code fourteen of the coding categories independently, less confident that we

would consistently code the timing and modify categories, and unsure about our consistency for

the review code since it did not appear in the reliability set.

After establishing IRR, I divided the remaining data files amongst myself and the second

coder, balancing across teacher, time of year, and course, and we independently coded different

sets of data files. After completing our independent coding, I noticed I applied the none code

more often to the subset of data files I coded than the second coder applied to the subset of data

files she coded (see Figure 3.10). Results from z-tests of equal proportions suggest our coding

differed for a subset of the data, particularly with Mr. Edwards, Ms. Jones, and Mr. Miller (see

Table 3.9). Since my set of data files and the second coder’s set of data files were balanced

across time (i.e., we each coded first semester and second semester interviews for each

participant), I expected some comparability across our separate coding. It is also possible that

teachers discussed vastly different ideas at the visits I coded than at the visits coded by the

second coder, which would explain my overuse of the none code. However, these low p-values

made me hesitant to make strong claims about the frequency of codes across teachers.

www.manaraa.com

159

Figure 3.10. Percentage of codes applied to interview and open-ended questionnaire data.

3.8.3. Prolonged Engagement and Persistent Observation

Prolonged engagement in the field and persistent observation of sites is important for the

trustworthiness of a study because it helps to develop trust between the researcher and the

participants, overcome distortions in behavior due to the presence of a newcomer in the

classroom, and distinguish irrelevant events from atypical events of importance (Lincoln &

Guba, 1985). I find these strategies particularly important when working in K-12 environments

because teachers sometimes associate the presence of a researcher in their classroom with

performance evaluations conducted by their administrators and district coaches. Another reason

these strategies were important for this study is because I asked teachers to reveal the

weaknesses of their teaching knowledge and practice. Exposing one’s weaknesses is unlikely to

occur after one encounter with a researcher.

www.manaraa.com

160

Table 3.9

Test of Equal Proportions for Post-interrater Reliability Coding
Coding Category z p
Mr. Edwards

Knowledge 1.81 0.18
Responsibilities* 6.52 0.01

Focus on Self --- ---
None* 4.89 0.03

Ms. Jones
Knowledge 1.96 0.16

Responsibilities* 4.56 0.03
Focus on Self --- ---

None* 5.48 0.02
Ms. King

Knowledge 0.07 0.79
Responsibilities 0.88 0.35

Focus on Self 2.75 0.10
None 0.28 0.59

Mr. Miller
Knowledge* 4.34 0.04

Responsibilities 3.28 0.07
Focus on Self 3.24 0.07

None* 7.74 0.01
Mr. Perez

Knowledge 0.01 0.92
Responsibilities 0.40 0.53

Focus on Self 1.05 0.31
None 1.29 0.26

Ms. Robinson
Knowledge 3.07 0.08

Responsibilities 1.49 0.22
Focus on Self 2.07 0.15

None* 9.56 <0.01
*Indicates results of the z-test were statistically significant indicating the percentage of codes
applied by the primary researcher and the percentage of codes applied by the second coder
may not be comparable.

www.manaraa.com

161

The observation team achieved prolonged engagement and persistent observation by

working with most participants during the 2014-2015 school year before this dissertation work

began, except in the case of Mr. Perez who joined the study during the 2015-2016 school year.

Furthermore, we visited the participants multiple times across the school year which allowed us

to observe activity around the ebb and flow of high school calendars (i.e., regular class time,

winter breaks, and end-of-school exams). By working with teachers over time, we developed a

rapport that made the participants comfortable talking to observers about their craft. This rapport

was reflected in comments made by a couple of participants:

“I do want to say because you have been listening to me for two years that I am feeling

much more confident.” (Ms. King, April 2016)

“OK, those were fun. I actually like this. It gets me thinking.” (Mr. Miller, October 2015)

3.9 Researcher’s Role

Schwandt defines researcher reflexivity as “the process of critical self-reflection on one’s

biases, theoretical predispositions, preferences” (2007, p. 260). Highlighting one’s background

experiences allows readers to understand the perspective of the researcher and their interpretation

of study data (Creswell, 2012). Reflexivity also serves as a means of establishing validity in

qualitative research (Creswell & Miller, 2000). Below I provide a short account of my prior

experiences related to computer science, teaching, and the locales within which participants

worked to provide context for the perspective I bring to studying CS PCK.

My interest in computer science traces back to my childhood in the 1980s when I dabbled

with the computers in my family home. Once in high school, I enrolled in my first formal

www.manaraa.com

162

computer science courses which included an introduction to programming in a language similar

to Karel and the AP CS AB course which focused on the C++ programming language. I

continued to pursue computing studies in college where I earned a bachelor’s degree in the field.

While in college, I interned at two software companies and served as a teaching assistant for a

course on databases while studying abroad in Europe. During my graduate career, I gained

further experience in helping others learn to program as a teaching assistant in courses focused

on computer-based learning environments and multi-agent computational modelling. I also

conducted small studies exploring the use of pair programming and peer instruction to support

novice programmers enrolled in college computing courses. In the middle of my graduate career,

I took a leave of absence to spend a year developing and leading courses on databases and

software development for young adults in West Africa. More recently I have conducted

evaluations of initiatives focused on introducing high school boys of color and Latinx rural youth

to programming and the tech industry.

As someone who identifies as a Black American woman, I was often the only one in the

environments where I learned and applied my CS knowledge. Despite the notorious female-

unfriendly culture of the computing field (e.g., Margolis & Fisher, 2003), my experiences in CS

have been mostly positive and included supportive peers, family members, professors, and

mentors. I enjoy computing and continue to incorporate it into my professional work as an

educational researcher and in pursuit of my personal interests. At the same time, I understand the

ordeals computing can present to learners. During my studies, I spent many sleepless nights

reviewing concepts that required new ways of thinking, deciphering lecture slides of lengthy

programs that professors sped through in class, and attempting to solve assignments that often

www.manaraa.com

163

felt beyond my capacity. I watched friends enter the CS program with great hopes, but then leave

the department after reaching the limit of their patience or their endurance with a competitive

learning environment that did not lead them towards their goals. In my roles as a teaching

assistant and instructor, I saw many students struggle with course topics, compare themselves

negatively to peers who progressed more quickly, and, for some, eventually give up on

computing. Computer science can be challenging to learn, but I do believe that more learners,

especially novice learners, can experience success in the field if provided with the right

pedagogical and motivational supports.

WestEd’s receipt of an NSF award to study CS PCK of high school teachers presented

me with a propitious opportunity to address problems in computer science education through

research. However, while I had experiences as a CS student and instructor that could inform my

exploration of CS PCK, I have never been a high school teacher. I felt my inexperience with

secondary classroom teaching would limit my perspective on the study data because I did not

understand the daily realities of the participants’ teaching lives. Furthermore, I was never

educated in California and I had limited knowledge of the peculiarities of the educational

systems within the state. Lastly, I had been living in the region for only three years when the

WestEd study began and so I had little historical knowledge about the communities within which

participants worked. I worried that this lack of experience with the K-12 schooling culture might

impede my exploration of CS teachers working within this space.

During this study and the writing of this dissertation, I pursued multiple opportunities to

bolster my understanding of the lives of high school CS teachers in California. First, I joined a

local CSTA chapter where I attended monthly meetings of K-12 teachers and educational non-

www.manaraa.com

164

profit staff who discussed issues of pedagogy and advocacy. Second, I attended a two-day

professional development workshop at the University of California at Berkeley that introduced

the popular computing BJC course upon which the TEALS Intro curriculum is based. Third, I

brainstormed with district staff who support CS teachers around their ideas for researching CS

initiatives within their school systems. And fourth, I attended a public focus group hosted by the

California State Board of Education to gather feedback from teachers in northern California

about the content of CS standards for the state. These opportunities allowed me to interact with

educators across the state who varied in their CS teaching experience, courses taught, and student

populations. My discussions with these educators provided insight into their most pressing

problems related to CS. I also had the chance to see how teachers, both novice and experienced,

responded to professional learning opportunities that occurred outside of the classroom. So,

although I entered this study as an outsider researcher, I believe these opportunities provided me

a better understanding of the lives of high school computer science teachers which supported my

interpretation of the data gathered in this study.

www.manaraa.com

165

CHAPTER 4. CS TEACHING KNOWLEDGE

4.1 Introduction

Teacher knowledge develops with experience and requires strong content knowledge

(Borko & Livingston, 1989; Hashweh, 2005). Prior research suggests it takes at least five to

seven years to attain teaching expertise (Berliner, 2004) and ten years to develop programming

expertise (Robins et al., 2003). Furthermore, the field of CS is constantly changing, requiring

teachers to stay one step ahead of their students to learn new material, programming languages,

and paradigms (Gal-Ezer & Stephenson, 2010). So, what teaching knowledge can an experienced

educator new to CS realistically develop within a three-year, on-the-job professional

development program?

To investigate the development of CS PCK, I asked participants to complete a set of

activities centered around the topics covered in their courses. During these activities, teachers (a)

reflected on student difficulties and instructional methods related to linear data structures, (b)

identified the most difficult topics in their courses and described how they teach those topics, and

(c) completed an assessment and multiple think-aloud interviews focused on their content

knowledge for teaching. Given that teaching knowledge depends on the contexts within which

teachers work (Berliner, 2004), some of these activities related directly to participants’ recent

lessons. Other activities were identical for all participants to allow for comparisons across cases.

The specific question I explored with these activities was: what knowledge of CS content and

student thinking do in-service CS teachers develop while participating in an on-the-job PD

program? Before describing these activities and their results in more detail, I will provide a

www.manaraa.com

166

summary of research related to learning and teaching CS. This review is intended to provide

context for the study results described later in the chapter.

4.2 Research on Learning and Teaching CS

Computer science is notoriously challenging for novice learners. Du Boulay (1986),

concentrating on programming, attributed this challenge to five areas learners need to confront

simultaneously: recognizing what problems programming can solve (orientation), modelling how

computers execute commands (the notional machine), learning the syntax and semantics of

programming languages (notation), acquiring standard templates for common tasks (structures),

and planning, implementing, and testing programs (pragmatics). While attempting to master

these five areas, learners manifest misconceptions and less efficient practices. Effective teaching

requires knowledge of these difficulties and a repertoire of strategies to address them.

4.2.1. Knowledge of Student Understanding

In contrast to literature on CS PCK, a wealth of research exists on student understanding

of CS dating back to the 1970s. For example, du Boulay and O’Shea (1976) created a primer to

explain Logo programming to middle school students using analogical modelling of a Logo

machine. Since that time, work in this area has focused on mental models, perceptions and

misconceptions, and differences between novices and experts (Fincher & Petre, 2004b).

Robins, Rountree, and Rountree (2003) and Clancy (2004) provided reviews of research

on student understanding of CS focused specifically on novice programming. Their reviews

describe literature in this area as focused on expert-novice differences, programming knowledge

versus strategies, program comprehension versus program generation, procedural paradigms

www.manaraa.com

167

versus object-oriented paradigms, how novices learn, misconceptions, and attitudes. Several

patterns of student understanding summarized in their reviews are presented in Table 4.1.

Table 4.1

Summary of novice programmer understanding from Robins, Rountree, and Rountree (2003) and
Clancy (2004)
Topics Related to Novice
Programming

 Summary

Structure of knowledge The knowledge of novices is organized around superficial
similarities, context specific, and lacks detailed mental models.
Novices avoid, rather than manage, complexity.

Planning Novices do not often plan their programs. Issues related to planning
programs and arranging pieces of code, and not language features,
explains most of their difficulties.

Debugging Novices do not often test their programs. Novices repair programs
by attempting small fixes instead of larger reformulations of their
code.

Code execution Novices have difficulty tracing code, understanding the sequential
nature of program execution, and understanding flow of control in
programs.

Programming constructs Novices understand updating and testing variables better than
initialization, which they understand better than assignment.
Understanding of recursion is supported by learning about iterative
functions first.

Common bugs Novices have misconceptions and produce bugs related to loops,
conditionals, recursion, and arrays.

Sources of confusion Ambiguity between programming terms, English definitions (e.g.,
while indicating continuous activity in English versus a once-per-
iteration test in programming), and mathematical notation (e.g., = as
a test of equivalence versus as an assignment operator) is a source of
confusion for novice programmers. Overgeneralizing patterns
learned in one context is another source of confusion (e.g., only
seeing methods with number arguments can lead some students to
think all methods must take numbers as arguments).

Another area of research providing insight into student CS knowledge is programming

languages and environments designed for beginning learners. These tools are designed to

simplify aspects of programming found difficult by novices. Kelleher and Pausch (2005) created

a taxonomy of 80 such tools organized around (a) the goal of either teaching programming or

www.manaraa.com

168

using programming for other goals and (b) the aspect of programming made easier for novices.

Their review describes the hypotheses underlying the creation of these tools which include:

• General-purpose languages have unnecessary syntax and features, commands

ambiguous with English, and inconsistent uses for syntax

• Novices have difficulty with syntax (e.g., recalling commands and order of

parameters, knowing whether and where to use braces)

• Novices have difficulty understanding program execution and debugging

• Novices struggle to figure out what to build, do not know what they can build,

and cannot gauge project difficulty

• Mechanical difficulties of creating programs is a major barrier for novices

When learning CS, students face difficulties with specific concepts, expressing solutions with

programming, and problem solving. Educators need to be aware of student misconceptions and

of strategies to support them in overcoming common difficulties.

4.2.2. Instructional Strategies

Instructional strategies are techniques used to make subject matter understandable to

students. Strategies can be domain independent such as lectures, group projects, and simulations

or they can be subject-specific like inquiry practices in science. Examples of instructional

strategies used in computer science include pair programming (Hanks, McDowell, Draper, &

Krnjajic, 2004; McDowell et al., 2003; L. A. Williams & Kessler, 2001), peer instruction (Cutts,

Carbone, & van Haaster, 2004; Pargas & Shah, 2006; Simon, Kohanfars, Lee, Tamayo, & Cutts,

2010), media computation (Guzdial, 2003), and equity practices (Margolis et al., 2014). Prior

research on instructional strategies in CS has focused on the impact of different approaches on

www.manaraa.com

169

student outcomes. For example, in a meta-analysis of 32 studies of strategies used in introductory

collegiate courses, Vihavainen, Airaksinen, and Watson (2014) found evidence that courses with

relatable content or cooperative elements had more impact on student pass rates. Very little

research has explored the relationship between use of instructional strategies and teacher

knowledge in CS.

4.2.3. Linear Data Structures

A common topic in introductory computing courses is linear data structures. Linear data

structures, such as lists and arrays, store a sequential collection of elements. Figure 4.1 presents a

schematic of an array called myList that stores ten values. Common learner difficulties related to

arrays include confusing indices and element values, confusing rows and columns of

multidimensional arrays, and mistaking the length of an array for the last index in zero-based

structures (du Boulay, 1986; Kaczmarczyk et al., 2010). Researchers have explored different

strategies for introducing students to linear data structures including computer games (e.g., Eagle

& Barnes, 2008), test-driven learning methods (Hilton & Janzen, 2012), and media computation

approaches (e.g., Guzdial, 2003).

Figure 4.1. A visual representation of the array called myList which stores ten values. Source:
https://www.tutorialspoint.com/java/java_arrays.htm

www.manaraa.com

170

4.3 Method

4.3.1. Participants

Four teachers who varied in their prior CS teaching experiences participated in this

component of the case study: Ms. Robinson, Mr. Miller, Ms. Jones, and Ms. King. Ms. Robinson

and Mr. Miller had less prior CS teaching experience; both teachers were in their second year

with the TEALS program and neither taught CS prior to joining TEALS. Ms. Robinson taught

one section of the AP course. She also taught an introductory CS course outside of the TEALS

program. Mr. Miller taught two sections of the Intro course, one collaboratively with TEALS

volunteers and one independently. He followed the TEALS curriculum during the first semester

and then spent the second semester teaching HTML and Python. Ms. King and Ms. Jones had

more prior CS teaching experience. While Ms. King was also in her second year with TEALS,

she taught an introductory Java course independently in the past. During the study, she taught

three sections of the AP course. Ms. Jones was in her third year with TEALS and she taught

multiple sections of the Intro course. She followed the TEALS curriculum during the first

semester and spent the second semester teaching Java. If experience improves teaching

knowledge, one might expect Ms. King and Ms. Jones to display greater PCK than Ms. Robinson

and Mr. Miller.

4.3.2. Data Collection

Three types of data were collected to explore teachers’ PCK. The data sources included

think-aloud interviews conducted during the first semester of the study (see Appendices D, E,

and F), a PCK questionnaire administered at the end of the school year (see Appendix I), and a

www.manaraa.com

171

content assessment completed at the end of the school year as part of the main CSPCK study.

These data sources are detailed in the Methods chapter.

4.3.3. Data Analysis

Linear data structures. Using a synthesis of responses gathered from Ms. Jones and Mr.

Miller’s first semester think-aloud interviews and all four teachers’ responses to the PCK

questionnaire, I analyzed the quantity and type of ideas participants shared about teaching linear

data structures. First, I compared these responses against publicly available data sources gathered

from experienced computer science educators who completed similar tasks. This comparison

allowed for a heuristic analysis of participants’ teaching knowledge proficiency by exploring its

similarity to the knowledge of experienced teachers. These comparison sources, henceforth

named the expert educator list, were an online repository of computer science teaching tips

(http://csteachingtips.org) and workshop discussions amongst experienced CS teachers in

response to Loughran, Mulhall, and Berry’s CoRe instrument (Saeli et al., 2010). Second, I

categorized responses to determine if participants were providing qualitatively different

responses than those on the expert educator list. I used du Boulay’s (1986) five areas of

programming difficulty to categorize the nineteen student difficulties identified by participants

and expert educators. These categories are described above. I also used a grounded coding

approach to categorize methods of addressing student difficulties into one of six categories:

assigning problem solving tasks, providing real-life examples, relating concepts to other subject

domains, using representations, sequencing content, and presenting information.

Most difficult computing topics. Teachers were asked to identify the most difficult

topics in their courses and how they address the topics differently than other subject matter. First,

www.manaraa.com

172

I categorized participant responses using the K-12 Computer Science Framework (“K–12

Computer Science Framework,” 2016) which provides curricular guidelines for computing at the

primary and secondary levels. Produced by a committee of educators, researchers, and other

advocates, the guidelines were released in fall 2016. The framework includes five core concepts,

each with its own subconcepts, presented as learning progressions that identify what students

should learn by the end of grades 2, 5, 8, and 12. Second, I compared participant responses

against two ranked lists of difficult CS topics gathered in prior research. While there is

agreement in the computer science education community on which topics are difficult for

students, there is less consensus on the relative difficulty of these topics. Researchers have

explored the relative difficulty of computing topics by asking educators to rank lists of concepts

(e.g., Lahtinen, Ala-Mutka, & Järvinen, 2005; Milne & Rowe, 2002; Schulte & Bennedsen,

2006) or to provide open-ended responses about difficult topics (e.g., Dale, 2006), and by

analyzing student solutions to programming problems (e.g., Cherenkova, Zingaro, & Petersen,

2014). I selected questionnaire data gathered by Schulte and Bennedsen (2006) and Dale (2006)

as comparison sources (see Appendix J). Schulte and Bennedsen (2006) asked 349 computing

educators to rank the difficulty of twenty-eight computing topics on a five-point scale. The topics

were selected from prior research on difficult introductory programming topics. Dale (2006)

asked 347 computer science educators to describe the most difficult topic to teach in their

introductory courses. Dale categorized her response set into sixteen categories and reported on

the number of times each category was mentioned. I selected both data sets because they

included responses from high school teachers, educators in the United States, and educators who

mostly taught Java or C++. I also selected these two sources because of their differences in

www.manaraa.com

173

identifying difficult topics; one list used topics identified by the literature while the other list

used topics identified by participants.

Content Knowledge. Participant responses to think-aloud interviews and a multiple-

choice assessment provided insight into teachers’ understanding of the content covered in their

courses. In analyzing data on teachers’ content knowledge, I focused on the correctness and the

level of knowledge (i.e., partial or complete) expressed in their responses. Audio transcripts of

think-aloud interviews were transcribed and unitized around interview prompts. Responses were

coded as either correct (i.e., explanations were accurate), partial (i.e., explanations contained

both accurate and inaccurate claims), or incorrect (i.e., explanations were completely

inaccurate). For the content assessment, I calculated the percentage of items teachers answered

correctly and compared their performance against the average score of students in their classes

who agreed to share their assessment results. Participants completed content assessments aligned

to either the Intro or AP curricula.

4.4 Results

4.4.1. Linear Data Structures

Participants described thirteen difficulties students have with linear data structures, four

of which were also included on the expert educator list (see Table 4.2). Four difficulties on the

expert educator list were not mentioned by any participants, one of which was specific to the

Python programming language that only Mr. Miller used towards the end of the school year (see

Table 4.3). Difficulties provided by participants focused almost equally on issues with notation

and issues with pragmatics or structures. None of the difficulties provided by participants related

to issues with the notional machine. The most commonly reported difficulties were confusing

www.manaraa.com

174

indices in arrays, confusing Java Array methods and ArrayList methods, and rearranging values

in an array. In contrast, most of the difficulties provided on the expert educator list related to

issues with notation. The other difficulties on the expert educator list related either to issues with

the notional machine or to issues with pragmatics or structures. None of the difficulties from

participants or on the expert educator list related to issues with orientation, which may arise less

when discussing specific computing topics since issues related to orientation can occur across

multiple topics.

Participants described six methods for supporting student difficulties with linear data

structures, only one of which was also mentioned on the expert educator list (see Table 4.4).

Methods provided by participants related mostly to presenting information. Other methods

provided by participants related to sequencing content, representations, and one generic problem-

solving task. Only two instructional strategies were reported by multiple teachers: generic

problem-solving tasks and generic descriptions of presenting information. Fourteen methods on

the expert educator list were not mentioned by any participants (see Table 4.5). Most methods

provided on the expert educator list described specific problem-solving tasks. Other methods on

the expert educator list related to representations, real-life examples, relating content to other

domains, sequencing content, and presenting information.

www.manaraa.com

175

Table 4.2

Student Difficulties with Linear Data Structures

ID

Difficulty
 Difficulty

Type

DE1 Students think that arrays start at index 1 instead of 0. Students
assume that the element at index 3 and the 3rd element always
refer to the same element.

 Notation

DE2 A common misconception students have with arrays is getting
rows and columns backwards. When looping over arrays, mixing
up these parameters can cause some very strange and confusing
bugs.

 Pragmatics
or Structures

DE3 Putting parenthesis after the length method for Arrays in Java, it’s
just length without parenthesis. Students get really confused here
because the Java method size() for ArrayList has parentheses.

 Notation

DE7 Students think you can use the ‘item (any) of (list)’ block in
Snap! and Scratch to check for every item in a list, but this block
actually returns a random item.

 Notation

DP1 Length of 2D array vs length of a row. Pragmatics
or Structures

DP2 Null pointer exceptions. Pragmatics
or Structures

DP3 Closing the gaps when removing an item from a list. Moving
values but preserving order in a list (adding/removing items to
list).

 Pragmatics
or Structures

DP4 How to initialize array with desired length, with pre-set elements. Notation
DP5 Discerning between the index number and the corresponding data

value. Students try to modify the number of times an event
occurs by adding 1, but they code the addition to the value
instead of to the frequency of that value's occurrences.

 Pragmatics
or Structures

DP6 Not realizing that a new list has no elements. Notation
DP7 Not realizing the change-by-one block in Snap! means add 1. Notation
DP8 When students are coding they often forget about the contains

block in Snap!
 Notation

DP9 If asked to rewrite a script with repetitive blocks using lists, some
students will create a list but not make use of the list in a loop.

 Pragmatics
or Structures

Note: Difficulties prefaced with DE were also included on the expert comparison data source.
Difficulties prefaced with DP were only mentioned by case study participants.

www.manaraa.com

176

Table 4.3

Student Difficulties with Linear Data Structures Not Mentioned by Participants

ID

Difficulty
 Difficulty

Type

DE5 Students may think that assigning one array to point to another
array makes a copy of that array, failing to make a distinction
between shallow and deep copies.

 Notional

DE6 Students have difficulty working with temporary variables in
arrays.

 Pragmatics or
Structures

DE8 Reinforce that certain types in Python such as lists are mutable
while others (e.g., strings, tuples) are not. Students have difficulty
tracing code that uses mutable types because they often forget this.

 Notional

DE9 One of the first obstacles students need to overcome when learning
about arrays is that there is only one name for several places where
to store values.

 Notation

Table 4.4

Methods of Addressing Student Difficulties with Linear Data Structures

ID Method Method Type

ME1 When teaching null dereferences, show a call that dereferences a
null pointer in a debugger to give students a snapshot of what is
happening.

 Present
information

MP1 More practice. Problem
solving task

MP2 Labeling 0, 1, 2, etc. on diagrams on the board. While tracing,
labeling the arrays. I draw diagrams and encourage them to draw
too.

 Representations

MP3 I teach arrays first, so they can see the point of the List, but some
books/teachers do it the other way.

 Sequencing

MP4 Offering choices of methods available to amend a list. Present
information

MP5 I try to keep mentioning that [a 2D array] is just an array of arrays. Present
information

MP7 Present information to students (without details on what is
presented).

 Present
information

Note: Methods prefaced with ME were also included on the expert comparison data source.
Methods prefaced with MP were only mentioned by case study participants.

www.manaraa.com

177

 Table 4.5

Methods of Addressing Student Difficulties with Linear Data Structures Not Mentioned by Participants
ID Method Method Type
ME2 Have students translate between Java Array and ArrayList to

highlight the differences between the two.
 Problem solving

task
ME3 Use a visual proof to demonstrate that the better strategy for resizing

arrays is doubling the size to make it easier for students to
understand.

 Representations

ME4 Tell students that the data structure linked lists were used for the
human genome sequencing project to motivate the value of this
structure and increase interest.

 Real life
example

ME5 Have students brainstorm about the data structure Pandora uses for
playlists to help motivate ArrayLists or linked lists through
comparison to everyday life.

 Real life
example

ME6 Have students answer questions like: arr[2][3] + arr[1][4]. This is
important because students may have difficulty using the values they
get from array references in other calculations.

 Problem solving
task

ME7 Starting from a natural model, such as a text string. Students are
given a text string and asked to do something with it with many
letters. Then reaching lists of strings, as for example list of names,
which means an array of strings.

 Problem solving
task

ME8 Providing challenging examples where the index is an array element,
implying several brackets, like: a[[[1]]]

 Problem solving
task

ME9 Finding the maximum value of the array or the place of the maximum
value. This implies asking the students the two different aspects of an
array: what is the index and what is the value.

 Problem solving
task

ME10 It could be possible to collaborate with a mathematics teacher to
synchronize the teaching of arrays with the teaching of coordinates
(coordinate x).

 Relate to other
domains

ME11 Give commands to an imaginary person sitting in an empty desk to
model what happens when you give commands to an object that
hasn’t been instantiated to help students understand null pointer
exceptions. This activity helps students realize one of the common
situations where a null pointer exception might incur.

 Representations

ME12 Use tangible examples to demonstrate arrays (e.g., egg carton, seed
sorter, linked carabiners, mail postboxes, Dixie cups, pill organizers,
dresser of clothing).

 Representations

ME13 Do a problem requiring students to loop through arrays/lists. Problem solving
task

ME14 Have students implement a larger program that requires arrays/lists
(e.g., nxn Magic Square, mazes, seam carving, plot pictures on grid,
Four rotations, time counters).

 Problem solving
task

ME15 Do loops before arrays/lists. Sequencing

www.manaraa.com

178

Next, responses were reviewed by teacher to discern any similarities or differences across

participants based on their prior CS teaching experiences. The Intro teachers identified student

difficulties during think-aloud interviews not reported on the PCK questionnaire (Mr. Miller

discussed DP6 and DP7; Ms. Jones discussed DP8, DP9, and DE7). Since the AP teachers did

not complete similar think-aloud interviews, this cross-teacher comparison focused only on ideas

shared on the PCK questionnaire that all four participants completed. Table 4.6 shows the

number of unique difficulties and methods each teacher reported on the PCK questionnaire and

the number of their responses also included on the expert educator list. Table 4.7 lists the specific

difficulties and methods mentioned by each teacher. Ms. King, a more experienced AP CS

teacher, provided the most unique student difficulties, the most methods, and the most responses

also mentioned on the expert educator list. Ms. Robinson, a less experienced AP CS teacher,

provided one unique student difficulty, one unique method, and one response that was also on

the expert educator list. In contrast, the two Intro teachers, despite having different levels of CS

teaching experience, produced a similar number of responses. Ms. Jones provided two student

difficulties and two methods; Mr. Miller provided three student difficulties and three methods.

Table 4.6

Student Difficulties and Methods for Linear Data Structures Mentioned by Participants

Teacher

Unique

Difficulties

 Difficulties
on Expert

List

Unique

Methods

Methods on
Expert List

Ms. Robinson 1 1 1 0

Mr. Miller 3 1 3 0

Ms. Jones 2 1 2 0

Ms. King 6 3 5 1

www.manaraa.com

179

Table 4.7

Student Difficulties and Methods for Linear Data Structures Mentioned by Participants
Teacher Difficulties Methods
Ms. Robinson ---

DE3
 MP7

Mr. Miller DP3, DP5
DE1

 MP1, MP4, MP7

Ms. Jones DP4
DE1

 MP1, MP7

Ms. King DP1, DP2, DP3
DE1, DE2, DE3

 MP1, MP2, MP3,
MP5
ME1

Note: Within each cell, items listed on the top row were only mentioned by study participants. Items
on the bottom row were also mentioned on the expert lists.

Lastly, teachers described the types of lessons and activities they would plan around

linear data structures and a rationale for those lessons. Mr. Miller and Ms. King each described

three to four materials from published sources (e.g., worksheets from APlus, TEALS lessons,

exercises from Cay Horstmann’s Big Java textbook, Udacity videos). Ms. Jones listed four

generic lessons and activities (e.g., worksheets on manipulating arrays, lesson on 2D arrays) and

five lab projects that involved manipulating arrays (e.g., Array Statistics to calculate descriptive

statistics for an array of integers; Index Product to create a 2D array where elements are the

products of their indices). Instead of describing lessons or activities, Ms. Robinson offered three

examples of what arrays can represent (i.e., concert seating, store warehouse, student

information). Participants offered three reasons for their lessons and activities (see Table 4.8).

All four teachers said students need to gain practice using linear data structures. Mr. Miller, Ms.

Jones, and Ms. King made references to vertical content knowledge and how students need to

learn about arrays and lists because they relate to other projects or course topics. Ms. Jones also

provided direct instruction as a rationale for one of her lessons.

www.manaraa.com

180

Table 4.8

Rationale for Lessons/Activities on Linear Data Structures

Rationale

Examples
 Number of

Participants
Student practice

 • Practice for learning the notation and the
difference between arrays and ArrayList

• Additional Practice and application.
• Students need further practice with

iteration. The worksheet allows for targeted
problems where students can focus on one
idea at a time.

• Again students need to repeat setting up
looping through lists-- practice makes
perfect!

 4

Direct instruction • In order to use arrays, students need to
have an introduction to it.

 1

Vertical content knowledge • Students need to learn about navigation and
manipulation of 2D arrays in order to do
some larger projects.

• It's a common use of traversing a list.

 3

Summary. Data gathered from the PCK questionnaire prompts related to student

difficulties showed participants had greater knowledge of student difficulties than instructional

methods and that their ideas differed from the expert educator list. Participant ideas about student

difficulties focused equally on issues with notation and issues with pragmatics or structures. In

contrast, ideas on the expert educator list focused mostly on issues with notation and also

included issues with the notional machine. While participant ideas about methods for addressing

student difficulties focused mostly on presenting information, ideas on the expert educator list

focused mostly on problem solving tasks. The expert educator list also included sharing real-life

examples as a method of supporting students, which participants did not mention in their

www.manaraa.com

181

responses. Participants offered ideas about student difficulties and instructional methods that did

not appear on the expert educator list.

When describing their rationales for using lessons or activities to teach linear data

structures, participants explained that students need practice with the topic and that the topic was

related to other course content. Comparing their rationales to the K-12 Computer Science

Framework (“K–12 Computer Science Framework,” 2016), participants’ ideas focused

exclusively on developing student content knowledge and not on core practices that learners

should use when engaging with CS (e.g., collaborating, communicating about computing).

Across participants, the data show a slight correlation between the knowledge shared on

the questionnaire and their amount of CS teaching experience. Ms. Robinson, an AP teacher who

had less CS teaching experience, offered the fewest ideas related to student difficulties and

instructional methods. She was also the only participant who did not discuss vertical content

knowledge when explaining her rationale for lessons on linear data structures. Ms. King, an AP

teacher who had more CS teaching experience, offered the most ideas related to student

difficulties and instructional methods and the most ideas common to the expert educator list.

However, the Intro teachers, Mr. Miller who had less CS experience and Ms. Jones who had

more CS teaching experience, offered similar numbers of ideas that were greater than those

offered by Ms. Robinson and less than those offered by Ms. King.

4.4.2. Most Difficult Computing Topics

Teachers were asked to identify the most difficult topics in their courses and how they

address the topics differently (see Table 4.9). Topics listed by participants all fall within two of

www.manaraa.com

182

the five K-12 Computer Science Framework concepts: (a) computing systems and (b) algorithms

and programming. This is expected given the focus on programming in both the Intro and AP

Table 4.9

Most Difficult Computing Topics Covered in Teachers’ Courses

Teacher

Topics
 Ways of Addressing

Topics
 Related K12CS Topics*

Ms. Robinson • Arrays
• Binary
• Boolean logic
• Hex conversion
• Decimal
• Sorting
• Strings

 Additional practice
and time

 • 9-12.AP.Algorithms
• 9-12.AP.Variables
• 3-5.AP.Variables
• 3-5.AP.Control

Mr. Miller • Methods
• Objects

 Nothing different
from how other
topics are taught

 • 9-12.AP.Modularity
• 6-8.AP.Modularity

Ms. Jones • Recursion Varied instructional

strategies
 • 9-12.AP.Control

Ms. King • Inheritance

• Recursion
 Additional practice

and time
 • 9-12.AP.Modularity

• 9-12.AP.Control

*AP is an abbreviation for Algorithms and Programming

courses. Responses from Mr. Miller, Ms. Jones, and Ms. King relate to two subconcepts students

should master by either eighth grade or twelfth grade: control and modularity. The topics listed

by Ms. Robinson cover three different subconcepts that students should master by either fifth

grade or twelfth grade: algorithms, variables, and control. Ms. Robinson also mentioned binary

and hexadecimal conversion as a difficult topic. The K-12 Computer Science Framework only

mentions this as a computing systems topic that should not be prioritized at the elementary level.

Noticeably absent from the teachers’ responses was the subtopic of program development which

covers concepts such as planning, testing, and debugging. Researchers have identified program

planning as an area of difficulty for students who struggle to put pieces of code together, struggle

www.manaraa.com

183

tracing code, and spend little time planning and testing their programs (Robins et al., 2003).

While teachers did not mention program planning as a most difficult topic, they did comment on

this challenge during their interviews. For example, Ms. King once said, “So we've done

pseudocoding and even a short exercise it is hard for them to think in pseudocode. What they do

is they code it and then they write the pseudocode. Or they write the pseudocode very close to

code” (Ms. King, December 4, 2015).

Participant responses were compared against Schulte and Bennedsen’s (2006) list of

twenty-eight difficult topics in introductory programming courses. All of the topics listed by Mr.

Miller, Ms. Jones, and Ms. King were included on the Schulte and Bennedsen list; only two of

the seven topics listed by Ms. Robinson appear on the list (i.e., arrays, strings). The topics listed

by Ms. Jones and Ms. King are ranked as the first and fifth most difficult topics on the Schulte

and Bennedesen list. Topics listed by Mr. Miller were ranked as the fourteenth and twentieth

most difficult topics. Ms. Robinson’s topics were ranked at position twenty-two. Participant

responses were also compared against Dale’s (2006) list of sixteen difficult topics in introductory

programming courses. Only one of Ms. Robinson’s topics – arrays – appeared on Dale’s list, but

it was the fifth most commonly reported topic. The topics listed by Mr. Miller, Ms. Jones, and

Ms. King were ranked at positions seven, nine, ten, eleven, and fifteen. For the most part,

participant responses showed a similar pattern when compared against Schulte and Bennedesen’s

ranking and Dale’s ranking. However, the responses provided by Ms. Robinson shifted from one

of the less difficult topics on Schulte and Bennedesen’s list to one of the more difficult topics on

Dale’s list. Another noticeable pattern related to the most difficult computing topics was the

number of responses provided. While most teachers listed one or two topics related to the

www.manaraa.com

184

concepts of modularity and control that all appeared on comparison lists, Ms. Robinson listed

seven topics spanning multiple concepts, only two of which were included on comparison lists.

Participants were also asked how they address the most difficult topics of their courses

differently than other subject matter. Ms. Jones discussed instructional approaches that were

specific to the topic of recursion, for example:

We show interesting recursive images and develop some analogies for recursion based on

these images. We have a culture day/“CS unplugged day” on fractals. We give very

structured and well guided projects for students to make that involve recursion, and we

offer a lot of one-on-one support. There is less freedom on these projects, and more

support. Also, we do not go too in depth into recursion as we know the topic is difficult

and we just want to give the students an introduction.

Both AP teachers, Ms. Robinson and Ms. King, wrote that they would devote more time and

student practice to the most difficult topics in their courses. Lastly, Mr. Miller said he did not

treat objects and methods any differently than other topics. Ms. Robinson and Ms. King

mentioned generic approaches that could apply to any topic while Ms. Jones provided ideas that

were specific to the topic of recursion. This may suggest that Ms. Jones had a greater

understanding of instructional strategies for the topic she identified as most difficult and that Ms.

Robinson and Ms. King were still developing computing specific instructional strategies for the

topics they identified. Lastly, Mr. Miller did not do anything differently when teaching what he

considers the most difficult course topics. This might suggest that he could identify which topics

are challenging for students but he was still learning how those topics can best be presented to

support student understanding.

www.manaraa.com

185

Summary. Data gathered from the PCK questionnaire prompt about the most difficult

course topics showed a mixed picture of the participants’ teaching knowledge. When considering

the ranking of most difficult topics, the knowledge of Ms. Robinson, the AP teacher with less CS

teaching experience, differed from the knowledge of the other teachers. Ms. Robinson listed

several topics as the most difficult topics in her course, while the other participants listed either

one or two topics. Only a subset of Ms. Robinson’s topics were included on the comparison lists,

while all of Mr. Miller, Ms. Jones, and Ms. King’s ideas were included on both comparison lists.

When looking at methods used to teach the most difficult topics, Ms. Jones, an Intro teacher with

more CS teaching experience, offered strategies specific to CS. In contrast, Ms. Robinson and

Ms. King offered generic strategies and Mr. Miller offered none. Lastly, the participants focused

on CS concepts when identifying the most difficult topics in their courses and not on strategies

used to work with concepts.

4.4.3. Content Knowledge

 Effective teaching requires knowledge of concepts and procedures and the ability to

explain that knowledge to others and so content knowledge can serve as a gauge of preparedness

for teaching. Teachers’ content knowledge was examined through their performance on the

content assessment and their responses to think-aloud interviews.

Ms. Robinson correctly answered 41% of the items on the AP assessment at the end of

the school year. She incorrectly answered ten items related to variables, loops, program logic,

arrays, input and data types, objects, classes, sorting algorithms, and recursion. While most

teachers performed better than their students, Ms. Robinson scored slightly lower than her

students’ average score of 42%. Her responses to six items across two think-aloud prompts

www.manaraa.com

186

related to loops and conditionals showed a stronger understanding of the AP course topics. She

correctly reasoned through four items. Her responses were partially correct for two assessment

items where she made two notational errors related to Java syntax. First, when critiquing an

assessment item about for-loops, she correctly identified the number of times three of the four

loops executed but she made an off-by-one error for one of the loops. Second, when critiquing an

assessment item about conditionals, she identified all the conceptual errors in the problem but

overlooked a syntax error in the proposed solution that incorrectly used an equal sign (=) instead

of a double equal sign (==) to test equality.

Mr. Miller correctly answered all items on the Intro assessment at the end of the school

year, performing better than his students who averaged a score of 45%. His responses to nine

items across three think-aloud prompts related to loops, conditionals, and arrays showed a partial

understanding of some Intro course topics. He correctly reasoned through six items related to

loops, conditionals, and lists. His responses were partially correct for three items. First, in

evaluating assessment items related to conditionals, he misinterpreted one of three English

statements that were to be translated into conditional statements in Snap! code. He thought the

statement ‘x-position and y-position are of opposite signs’ meant make each value have the

opposite sign; the statement is asking students to test if the position values are of opposite sign.

Second, while evaluating another assessment item where students were asked to identify and

correct errors in a coding solution that reported if an age was even and between 10 and 100, he

correctly identified all the conceptual errors of the program but overlooked a syntax error that

used the less than (<) and greater than (>) operators instead of less than or equal (≤) and greater

than or equal (≥) operators to test for inclusion. Third, in reviewing a student solution to the task

www.manaraa.com

187

of drawing a square where opposite sides were the same color, he correctly identified what the

student’s first loop should accomplish but he did not explain how the two loops could be revised

together to produce the desired result.

Ms. King correctly answered 82% of the items on the AP assessment. She incorrectly

answered three items related to variables, data types, and objects. She performed better than her

students who averaged a score 58% on the exam. Her responses to seven items across two think-

aloud prompts showed a partial understanding of conditionals, loops, and variables. She correctly

reasoned through four items including one assessment item about loops and three student

solutions related to a task about variables. Her responses to three items were partially correct.

First, she incorrectly solved a problem where students were asked to replace three assignment

statements with one line of code, but she did provide rationales for incorrect student solutions to

the problem. Second, when critiquing an assessment item about conditional statements, she

correctly identified that the code returned the maximum of three numbers but then discussed how

the code might not execute as expected if the list of three items contained duplicates; this issue

would not occur in the coding solution she reviewed. Third, when critiquing another assessment

item about conditionals, she identified all the conceptual errors in the problem but overlooked a

syntax error in the proposed solution that used an equal sign (=) instead of a double equal sign

(==) to test equality.

Ms. Jones correctly answered 93% of the items on the Intro assessment. She answered

one item related to recursion partially correctly (i.e., she selected one correct response out of

three correct responses). She performed better on the assessment than her students who averaged

www.manaraa.com

188

60% on the assessment. Ms. Jones responded to six items across two think-aloud prompts related

to arrays and variables and answered all items correctly.

Summary. As with responses related to the most difficult course topics, data gathered

from the content assessments and think-aloud interviews showed a mixed picture of the

participants’ teaching knowledge. Regarding the content assessment, Ms. Robinson, the AP

teacher with less CS teaching experience, scored significantly lower than the other three

participants. Mr. Miller, an Intro teacher with less CS teaching experience, received a perfect

score on the content assessment. Ms. King and Ms. Jones, both teachers with more CS teaching

experience, made some errors on the content assessment. Regarding the think-aloud interviews,

Ms. Jones, the Intro teacher with more CS teaching experience, demonstrated the most complete

content knowledge while the other three teachers showed partial understanding.

Across participants, discussions of student solution prompts were more complete than

discussions of assessment item prompts. While think-aloud interviews provided opportunities for

richer explanations, they may not be well suited for assessing knowledge of syntax. Three

teachers – Ms. Robinson, Ms. King, and Mr. Miller – discussed assessment items that asked

students to identify all the errors in a coding solution. All three teachers identified the conceptual

errors in the code, but they each overlooked purely syntactical errors related to comparison

operators. The think-aloud interview format may be less conducive to noticing syntactical issues

because such errors can be easily overlooked when reading code outside of a programming

environment.

www.manaraa.com

189

4.5 Discussion

Results from the PCK questionnaire, think-aloud interviews, and content assessments

were used to explore one research question: what knowledge of CS content and student thinking

do in-service CS teachers develop while participating in an on-the-job PD program? Results

show a range of content knowledge and PCK across participants, with certain instruments

eliciting more evidence of teacher knowledge than others. The results of this section show that

teachers seem to know more about student difficulties than instructional strategies specific to

computer science and that they are still developing their content knowledge. Also, the data

suggest that participant knowledge may not simply be a subset of expert educator knowledge,

because participants expressed ideas about student difficulties and teaching methods that did not

appear on the expert educator list. It is possible that expert educators are aware of these ideas and

did not mention them, have integrated them with other ideas, or no longer consider them useful

in their teaching. To explore this more, future studies might investigate how ideas about student

conceptions and instructional methods change as teachers gain more experience in CS

classrooms, a better understanding of the discipline, and mastery of the subject-matter and

related practices.

Regarding the PCK questionnaire, one noticeable difference between the participant

responses and the expert educator list was the use of real world examples (e.g., linear data

structures were used in the human genome sequencing project) and metaphors (e.g., linear data

structures are like egg cartons). Participants did not mention these examples when discussing

how to support students’ understanding of linear data structures. Examples from the real world

and metaphors play an important role in CS teaching as they help students form mental models

www.manaraa.com

190

of CS concepts (Hazzan et al., 2015; Woollard, 2005). Teachers new to CS may not have

knowledge of real world examples and useful metaphors to draw upon if they do not have much

experience with CS outside of their classrooms. Unlike knowledge of student conceptions that

teachers can gather through their interactions with learners, the classroom may not provide new

CS teachers with the experiences necessary to accumulate a stock of these examples or

metaphors that are specific to course content. Furthermore, it is possible that transitioning

teachers will develop their own metaphors of CS concepts, but that the metaphors may be flawed

if they do not deeply understand the concepts they want to represent. Thus, the acquisition of real

world examples and metaphors related to CS concepts may need to be a focal point of training

for transitioning teachers.

Although only four teachers participated in this component of the study, the data they

provided suggests there may be at least two stages of teacher knowledge development through

which transitioning CS educators progress. Ms. Robinson’s teaching knowledge seemed different

than other teachers. She listed fewer student difficulties, identified several topics as the most

difficult course topic, and received a low score on the content assessment although she explained

many items correctly during think-aloud interviews. Mr. Miller, Ms. Jones, and Ms. King

appeared to be at a different developmental stage because they possessed greater knowledge of

student conceptions and course content. Although these three teachers appeared to be at a similar

stage, their content knowledge and PCK varied in different ways. Teaching knowledge looks

different across teachers and depends on the specific contexts within which teachers work, so I

would not expect the results of this section to be uniform or show a progression towards the

same point. However, future work might investigate a larger pool of transitioning CS teachers to

www.manaraa.com

191

determine if there are different profiles of CS PCK development that could distinguish teachers

like Mr. Miller, Ms. Jones, and Ms. King and identify more targeted areas of need related to their

individual PCK development.

Limitations. I used three different data sources to investigate teachers’ content

knowledge and PCK, but they did not all provide the same portrait of CS PCK within or across

teachers. Consider the responses of Ms. King and Ms. Jones. While Ms. King displayed the

strongest CS PCK when identifying student difficulties and instructional strategies related to

linear data structures, she only provided generic pedagogical strategies when discussing the most

difficult computing topics. In contrast, Ms. Jones identified computing specific instructional

strategies when discussing the most difficult computing topics, but she provided fewer student

difficulties and instructional strategies than Ms. King when discuss linear data structures. As

another example, consider the results of Ms. Robinson and Mr. Miller on the content knowledge

instruments. Ms. Robinson performed poorly on her content assessment, but she could articulate

more PCK ideas during think-aloud interviews. Mr. Miller, on the other hand, received a perfect

score on his assessment, but displayed partial understanding in the think-aloud interviews.

Lastly, both Ms. Jones and Mr. Miller identified student difficulties with linear data structures

during their first semester interviews that they did not include on their end-of-year PCK

questionnaire.

Information gathered from these sources might suggest, as echoed in the literature (e.g.,

Baxter & Lederman, 1999), that there are limitations to relying on one instrument to measure

teaching knowledge. However, it may also be the case that the instruments I created, and used

for the first time in this study, suffer from measurement validity issues which can be addressed.

www.manaraa.com

192

While there may not be one perfect instrument to capture a complete picture of CS PCK at

different stages of development, it may be possible to improve the think-aloud interviews, PCK

questionnaire, and content assessment to provide more consistent results across instruments.

www.manaraa.com

193

CHAPTER 5. INSTRUCTIONAL RESPONSIBILITIES

5.1 Introduction

A teacher’s role is multifaceted and involves many responsibilities ranging from subject

specific tasks (e.g., preparing instructional materials), general pedagogical activities (e.g.,

classroom management), and other professional obligations (e.g., coaching extracurricular

teams). New teachers are often overwhelmed when confronted with all these responsibilities

once they enter the classroom and find it difficult to attend to relevant events (Feiman-Nemser,

2003; Feldon, 2007). Focusing on responsibilities during training can better equip educators to

implement instructional tasks once they begin new teaching assignments (D. L. Ball & Forzani,

2009). But which responsibilities should teachers focus on during their training to best support

their professional development?

In the TEALS program, participants distribute responsibilities across their team to

facilitate teacher learning. This co-teaching arrangement provides the opportunity to explore how

teaching tasks relate to teacher development within authentic classroom environments. While

TEALS offers guidance on the distribution of responsibilities for their PD program, teams

implement their daily teaching tasks differently depending on factors such as teacher readiness,

volunteer availability, and the type of learning environment used in the classroom. One goal of

this dissertation was to identify the specific responsibilities teachers assumed while participating

in the PD and explore how these responsibilities supported PCK development. Drawing on self-

reported data of instructional responsibilities, observations, interviews, and questionnaire

responses, I explore the following questions: what instructional responsibilities do teachers

undertake when planning and implementing their lessons within the conditions of their co-

www.manaraa.com

194

teaching partnerships? and how does teacher knowledge support the implementation of

instructional responsibilities?

5.2 Research on Instructional Responsibilities

In the past few years, some researchers have renewed interest in bringing instructional

responsibilities to the fore of teacher education and providing teachers with opportunities to

engage in elements of interactive teaching (Lampert, 2010). Ball and Cohen (1999) proposed a

collaborative, inquiry-oriented model of professional learning that is centered around the tasks

and artifacts of instruction providing educators with opportunities to analyze and improve their

craft. Grossman and McDonald (2008) suggested the field focus on pedagogies of enactment

where teachers develop skilled practice through performing tasks, receiving feedback, and

attempting the tasks again. Kazemi, Lampert, and Ghousseini (2007) suggested decomposing

teaching into routines of practice that both novice and expert educators could perform to become

what they term ambitious teachers who support the success of all students.

Essential to a focus on practice in teacher training are frameworks of instructional

routines that provide a common vocabulary to describe tasks specific to particular subject matter

and tasks common across grade levels and subjects (Grossman & McDonald, 2008). Some of

these tasks include leading a discussion, assessing student knowledge, presenting ideas, finding

examples to make a specific point, connecting a topic to topics taught in prior or future years,

appraising content on instructional materials, modifying tasks to be easier or harder, and

selecting representations (D. L. Ball et al., 2008; Kazemi et al., 2007). Several groups of

researchers have worked towards dividing instructional responsibilities into high-leverage

practices that can improve student achievement, occur regularly in teaching, and support teacher

www.manaraa.com

195

understanding of students and their craft (Grossman et al., 2009). However, there is still no

consensus around which teaching tasks should form the core of practice-based professional

development (Forzani, 2014).

5.3 Method

5.3.1. Participants

Six teachers who varied in their professional development stages participated in this

component of the case study. Ms. Robinson, was in the volunteer-led stage. She relied heavily on

volunteers to lead her AP course during the first term and she began transitioning into a lead role

on her teaching team during the second term. Two teachers, Ms. Jones and Mr. Miller, were in

the collaborative stage. They worked with volunteers to plan, implement, and revise their courses

throughout the year. The remaining three teachers, Ms. King, Mr. Edwards, and Mr. Perez, were

in the teacher-led stage for the entire school year. They directed their courses receiving support

from volunteers to assist students, grade assignments, and explain topics unfamiliar to the

teachers. It is important to consider each participant’s stage in the PD program when examining

their responsibilities, because their progress in the program will influence how they share

teaching tasks with their volunteers.

5.3.2. Data Collection and Analysis

At the end of each visit, teachers were asked to identify who on their teaching team

contributed to instructional responsibilities related to lesson preparation (i.e., developing lessons,

creating assignments), instructional delivery (i.e., delivering lessons, managing the classroom),

and evaluation of learning (i.e., assisting students, grading student work). Option choices were:

mostly teacher, both volunteers and teacher, mostly volunteer, and no one. I converted these

www.manaraa.com

196

levels into numeric values in order to average engagement in instructional responsibilities over

the school year. Since I was most interested in the degree to which teachers assumed

instructional responsibilities, I collapsed the levels of no one and mostly volunteers to a value of

0, assigned both volunteers and teachers a value of 1, and assigned mostly teacher a value of 2.

Ms. Robinson, Mr. Edwards, and Mr. Perez only completed five of their six post-lesson

questionnaires; Ms. Jones, Ms. King, and Mr. Miller completed all of their post-lesson

questionnaires.

Observation data were compared against participants’ self-reported information in order

to determine the degree to which observers and participants shared a common understanding of

instructional responsibilities. Observation data was compared against self-reported data for the

thirty-three visits where teachers completed the questionnaire item about responsibilities. Due to

changes in the observation protocol between the first and second semesters, I only included the

observation protocol categories gathered across the entire school year. Percentages of delivering

instruction and assisting students gathered from the observation data were compared against the

closed-ended, post-lesson questionnaire items. Questionnaire data were deemed in agreement

with observation data if (a) a teacher indicated mostly volunteers completed a task and the

observer noticed volunteers performing the responsibility a greater percentage of class time than

the teacher, (b) a teacher indicated both teacher and volunteers completed a task and the observer

noticed both members of the instructional team performing the responsibility during class time,

or (c) a teacher indicated mostly the teacher completed a task and the observer noticed the

teacher performing the responsibility a greater percentage of class time than volunteers.

www.manaraa.com

197

To explore responsibilities in more depth and to identify other teaching tasks assumed by

participants, I analyzed reflections offered during interviews and on open-ended questionnaire

items. Participant comments were coded into one of nine responsibilities grouped into two major

categories: (a) planning and organizing lessons and (b) implementing and monitoring instruction.

(see Table 5.1). The coding scheme was based on Ball, Thames, and Phelps’ (2008) list of

mathematical tasks of teaching, TEALS documentation describing the tasks expected of teaching

teams, and responsibilities discussed by case study participants.

Table 5.1

Coding Scheme of Instructional Responsibilities
Category Definition
Plan and Organize Lessons
Find materials Search for and evaluate instructional materials
Create materials Create instructional materials
Modify materials Modify instructional materials created by others
Review materials Look over existing instructional materials
Practice materials Complete tasks that will be assigned to students
Organize lesson Decide on the timing, pacing, sequencing of lessons

Decide on student grouping for group work
Implement and Monitor Instruction
Assist students Provide help to students
Evaluate learning Assess students, assign grades, review student progress
Present ideas Present CS information, give CS explanations, whole class instruction

I used Ball and Cohen’s (1999) model of professional learning as an interpretive guide to

conduct an exploratory analysis into the relationship between responsibilities and teaching

knowledge. Their model highlights how many teaching tasks can support an examination of

practice because “in the course of these tasks, teachers may puzzle, weigh alternatives, draw on

what they know or can access as resources for judgments and decisions” (D. L. Ball & Cohen,

1999, p. 14). I examined how different teaching tasks allowed for active noticing, interpretation,

www.manaraa.com

198

and working with artifacts of practice. For example, when searching for assessment items (i.e.,

find materials), did participants compare multiple sources or consider how well the assessments

fit with material covered in their course? Although teachers were asked about their instructional

responsibilities and their PCK, they were not asked to explicitly discuss how their

responsibilities supported their teaching knowledge development. So, I looked through the coded

questionnaire and interview data for instances where teachers discussed their responsibilities to

see if they also made comments about their PCK. While just a small number of comments were

found, they give ideas for factors to consider when looking at the relationship between specific

responsibilities and PCK development.

5.4 Results

5.4.1. Instructional Responsibilities

Teachers’ self-reported instructional responsibilities, averaged across the school year, are

displayed in Figure 5.1. All teachers reported undertaking each of the six responsibilities in their

CS classes to some degree. As expected, participants in the teacher-led PD stage reported greater

responsibility of both lesson preparation tasks than participants in the volunteer-led or

collaborative PD stages. However, the assumption of responsibilities related to instructional

delivery varied across PD stages. Ms. Robinson, Ms. Jones, and Mr. Edwards, each in a different

PD stage, reported sharing the responsibility of delivering lessons with their volunteers; Mr.

Miller, Ms. King, and Mr. Perez reported greater independent responsibility of this activity.

Apart from Mr. Edwards, all teachers bore the brunt of managing their classrooms, which is

recommended in the TEALS model. The assumption of responsibilities related to evaluation of

learning also varied across PD stages. The task of assisting students was reported more

www.manaraa.com

199

frequently by participants in the volunteer-led and teacher-led PD stages and less frequently by

participants in the collaborative PD stage. Mr. Perez and Ms. Jones reported less responsibility

for the task of grading student work than the other four teachers.

This first step in the analysis served to identify the frequency with which participants

undertook instructional tasks and differences in these frequencies based on PD stage. Two tasks

did not relate directly to PD stage: assisting students and grading student work. The self-reported

data suggests that participants followed the ideal TEALS implementation regarding lesson

preparation tasks and, for the most part, delivering lessons (i.e., teachers with a greater lead role

in their classrooms assumed these tasks more frequently). The one exception to this pattern was

Mr. Edwards whose pattern of response for all instructional tasks seemed different than other

teachers. He was the only participant to report the same average frequency of responsibility for

every instructional task across the school year. In the next section, I explore this anomaly and

others by comparing the participants’ self-reported data with observational data.

www.manaraa.com

200

Figure 5.1. Self-reported distribution of instructional tasks averaged across the school year. Rating options: mostly volunteer (0), no
one (0), both teacher and volunteer (1), and mostly teacher (2). Co-teaching model: Volunteer-led (●), Collaborative (), Teacher-led
(◊). Letters within symbols indicate the first letter of the teacher’s last name.

R

R

M

MJ

J K

KE

E

P

P

0.00 1.00 2.00

Develop lessons

Create assignments

Both Teacher and Volunteer Mostly TeacherMostly Volunteer or No one

Participants using a teacher-led model reported greater responsibility for lesson preparation tasks

R

R

M

M

J

J

K

K

E

E

P

P
0

1

2

0.00 1.00 2.00

Deliver lessons

Manage classroom

Both Teacher and Volunteer Mostly TeacherMostly Volunteer or No one

Instructional delivery tasks were mostly in the purview of teachers

R

R

M

M

J

J

K

KE

E

P

P

0

1

2

0.00 1.00 2.00

Assist students

Grade student work

Both Teacher and Volunteer Mostly TeacherMostly Volunteer or No one

Distribution of evaluation tasks varied across co-teaching implementation types

www.manaraa.com

201

Observed instructional responsibilities. Since multiple researchers have cautioned

against relying on teacher self-report data (e.g., Randolph et al., 2008), I compared the agreement

between self-reported data gathered on the post-questionnaire and observation data (see Table

5.2). For the task of delivering lessons, agreement of teacher ratings and observation data was

low when teachers indicated that both they and their volunteers shared the task. For the task of

assisting students, agreement of teacher ratings and observation data was low when teachers

indicated volunteers were primarily responsible for the task.

Table 5.2

Visits Where Teacher Ratings Agree with Observation Data on Distribution of Instructional Tasks
 Delivering Lessons Assisting Students

Teacher Rating

 Agree
With

Observer

 Disagree With
Observer

 Agree
With

Observer

 Disagree
With

Observer
Mostly Volunteer 3 0 1* 3
Both Teacher and Volunteer 1* 6 14 5
Mostly Teacher 19 4 8 2
Totals 23 10 23 10
*Cases where agreement between self-reported teacher ratings and observation data were less than the number
of disagreements.

Three types of discrepancies occurred in how observers and teachers rated instructional

responsibilities for the same lesson. First, Mr. Edwards and Ms. Jones indicated on multiple

questionnaires that they shared a responsibility with volunteers when no volunteers were present

in the classroom. While I asked teachers to focus on the class observed this study, it may be that

when Mr. Edwards and Ms. Jones reported on responsibilities, they also considered other class

sessions with no volunteers that occurred the same day as case study observations where

volunteers were present. Also, Mr. Edwards recruited student helpers for his course who he may

www.manaraa.com

202

have considered as volunteers when completing the surveys. These student helpers were present

in two of the three discrepant lessons.

Second, Ms. King, Ms. Jones, and Mr. Perez reported that they were mostly responsible

for delivering lessons during class periods that were devoted entirely to lab time or student

presentations. Observers did not count teachers’ actions during these lessons as leading the class

or direct instruction. So, it seems teachers and observers interpreted lesson delivery differently.

Lastly, Ms. Jones and Mr. Miller sometimes disagreed with observers about who

delivered lessons and who assisted students, respectively. On three occasions, Ms. Jones reported

that both she and her volunteers delivered the lesson. However, the observer visiting Ms. Jones’

classroom saw volunteers involved mostly in assisting students. The observer only noted

volunteers clarifying an error in Ms. Jones’ lecture during one visit. As noted above, Ms. Jones

may have considered other class sessions or her volunteers’ role in creating the lessons when

reporting on this responsibility. On three occasions, Mr. Miller reported that volunteers mostly

assisted students when the observer recorded Mr. Miller supporting students more often. On

another occasion, Mr. Miller reported that he mostly assisted students when the observer

recorded equal effort between the teacher and the volunteers for this responsibility. During two

of these visit, volunteers conducted code reviews where they spent time with individual students

evaluating a past project. During the other two visits, the observer recorded Mr. Miller

supporting students for more time than the volunteers. Mr. Miller may have distinguished the

ways in which he and volunteers were providing support to students (e.g., formal code reviews

versus answering individual questions) and he may have concentrated on a subset of these ways

when reporting on the distribution of this responsibility.

www.manaraa.com

203

While the data showed that participants’ self-reported data about the frequency of

instructional responsibilities aligned mostly with observation data, there were occasional

discrepancies. These discrepancies may have stemmed from teachers looking across classes on

observation days or receiving support from students. Discrepancies related to lesson delivery

may be explained by an overloaded term. Lesson delivery seemed to encompass both traditional

lectures and computer lab time. Computer labs are an integral component of CS courses (Hazzan

et al., 2015) and they usually differ in format from direct instruction. However, both are teacher-

led activities which should be distinguished when investigating instructional responsibilities in

CS.

Examples of instructional responsibilities. In this phase of the analysis, I wanted to

better understand the work involved in participants’ everyday teaching. During interviews and on

open-ended questionnaire items, teachers provided more detail on the activities involved in

planning and organizing lessons (see Table 5.3) and in implementing and monitoring instruction.

(see Table 5.4). Teachers talked about (a) finding materials through Internet searches and on

teaching forums; (b) creating materials like videos or presentations to supplement the TEALS

curriculum or address specific student difficulties; (c) modifying materials like test questions or

projects to better align with their curricula or to narrow students’ focus; and (d) organizing

lessons to fit within their course schedule or to better scaffold student understanding. When

discussing how they familiarized themselves with instructional materials, teachers talked about

(a) reviewing materials by looking over past assignments assigned to students and (b) practicing

the projects assigned to students or writing test solutions. Teachers also provided concrete

examples of how they presented ideas, assisted students in class, and used different methods of

www.manaraa.com

204

Table 5.3

Teacher Quotations About Responsibilities Related to Planning and Organizing Lessons

Responsibility

Quotation

Find materials I've actually been wracking my brain for the last few weeks looking at lots of
examples on the internet [about interfaces, abstract classes], and I didn't find any that
really went beyond just the very basics. (Mr. Edwards, 9/29/2015)

TEALS gave us this Python curriculum that they are testing this year for the second
semester, and it didn't have these scaffolds. But I found this one, for instance, on the
forum that TEALS has. (Mr. Miller, 5/13/2016)

Create materials [I] wrote some code ahead of time to demo the student. (Ms. Robinson, 2/24/2016)

We are meeting every Tuesday evening to make the tests and the quizzes and the
rubrics and everything, and they are basically making most of the material that I am
teaching in class. (Ms. Jones, 2/10/2016)

Modify materials The Space Invaders [assignment] was from the Berkeley site, and then we just
modified it a little bit so that the bricks, or aliens, aren't moving, and so that [the
students] could focus on just getting the clones on the screen. (Ms. Jones, 2/6/2016)

The questions I have chosen from the test bank are ones that I feel they understand
because we practiced them and that they are similar to the AP. I will probably
rewrite a few questions to make sure it is a little more closely aligned with the AP.
(Ms. King, 2/5/2016)

Organize lesson Yeah, I am like, ‘OK, we have a deadline. I want to give them at least two weeks to
study, so we need to be done - we won't cover all of the Elevens [project], we'll have
to wrap up this Wednesday. Then we need to give the test on unit seven.’ (Ms.
Robinson, 3/28/2016)

There is a number guessing game project, drawing a tic-tac-toe board, the brick wall
problem. [Also] they have this whole page of script variables projects that also
involve conditionals, boolean and conjunctions... So I would want to think about
what order I want these things to go in, and where I can give students some choice as
to what they are doing and where to slow them down. (Mr. Perez, 9/25/2015)

Practice materials [My volunteer] had written the code, so I copied the code onto my notes. And so I
used that. I try to takes as much notes as possible while the students are maybe
typing the code…I try to write the code. (Ms. Robinson, 12/9/2015)

I found sample scripts with bugs through BJC and other CS teachers, and solved
each problem on my own. (Mr. Perez, 9/23/2015)

Review materials I once again watched all the Khan Academy lessons I've assigned students to watch
(Mr. Miller, 2/12/2016)

I looked at the assignments from last year and reassigned them. (Ms. King, 2/5/2016)

www.manaraa.com

205

Table 5.4

Teacher Quotations About Responsibilities Related to Implementing and Monitoring Instruction
Assist
students

 And then, as I walk around, I say ‘okay this is what the instructor said’. Then we see the
code, ‘this is why he did it’, or ‘this is what I wrote down’. And I try to explain what is
going on. So I mean I have an example I am showing it some. (Ms. Robinson, 12/9/2015)

And that allows myself and the TEALS volunteers to kind of float around the room and
answer questions where needed or check in and be like, you know, you guys have been
working on this for a long time, what is going on. (Mr. Perez, 9/25/2015)

I know that different students need more or less scaffolding, so I usually increase the hints
as time passes. The first wave just makes it through the benchmark. The next day I'll start
out with some tips. The next day, I may show some actual code. (Ms. King, 12/4/2015)

Evaluate
learning

 We grade it based on the rubric… So while we are looking to see if they capitalized
everything correctly and indented and put the braces in the right places and all that, we are
definitely seeing the code too, and we can catch things like if they are using arrays or not.
Or like, just being inefficient or putting things in the wrong place. (Ms. Jones, 2/10/2016)

After grading the tests last night I realized we have some real sort of mechanical issues
we've covered. In project one we worked with ArrayLists, in project two we switched to
arrays, and there is some confusion with about 30% of the kids, and so I wanted to take a
step back today (Mr. Edwards, 10/21/2015)

More than half the students finished their Practice-It, which is a nice aid to assess their
knowledge. (Ms. Robinson, 2/24/2016)

Students who finished early were helping other students. And we are slowly training the
early finishers the right way to help. In terms of not just saying, ‘you did this and this, you
need to do this’ or ‘type that’. Or grabbing the mouse and typing it for them. We are trying
to get the early finishers to ask like ‘explain the code to me’, ‘what do you think you should
do here’ - try to make the actual people figure it out themselves. (Ms. Jones, 4/4/2016)

What I announced to second period is I will spot check, I will just randomly pick some
projects and call you over, but I would hope that I can get in the semester to everybody at
some point. (Mr. Miller, 10/2/2015)

The classroom teacher met with the TEALS volunteers and we discussed what the students
were having trouble with. (Ms. Jones, 2/10/2016)

I have a collection of exit tickets that assess students' understandings of map and keep that I
will look through after completing this survey. (Mr. Perez, 10/23/2015)

Present
information

 I did some live coding to explain something that they weren't getting. (Ms. King, 2/5/2016)

I introduce the topic lightly, have the kids try it, and then go over it more in depth once I
find out where they need it, because I feel like they listen a lot better after they have already
tried it. (Mr. Edwards, 9/23/2015)

I try to do hands on things, and so even when we were talking about searching stuff, I took
the kids outside and we sorted people…because I think some kids needs more of a tactile
kind of experience. (Mr. Edwards, 3/9/2016)

www.manaraa.com

206

formative and summative evaluation of student learning (e.g., code reviews, student peer review,

entry tickets).

Coded interview data and questionnaire data were reviewed to identify the number of

times teachers talked about each of the nine instructional responsibilities included in the coding

scheme to discern patterns in the focus of teachers’ comments and their PD stage. Treemaps

displaying coding frequencies for each teacher are presented in Figure 5.2. In these maps, the

most frequently mentioned tasks are in the upper left corner and shading is used to indicate type

of task (i.e., either a planning task or an implementation task). These diagrams can be used to

easily see if a participant’s coded interview units focused on one type of instructional task more

than the other. First, Ms. Robinson, Ms. Jones, and Mr. Edwards, each in a different PD stage,

did not discuss all the teaching tasks. Ms. Robinson did not discuss finding materials or

modifying materials. She was in her second year of the TEALS program and uncomfortable with

many course topics, so she likely relied heavily on the TEALS curricular materials in their

original form. During her first case study visit, she said: “We are following along the TEALS

lesson plan, a guide. So we are using the work - pretty much following it very closely.

Sometimes we don't, but most of the time we do.” She also expressed relief during interviews in

December, February, and March at having access to pseudocode and problem solutions from her

volunteers and from TEALS.

www.manaraa.com

207

Figure 5.2. Number of interview and questionnaire units where teachers discussed their instructional responsibilities. Tasks related to
planning and organizing lessons are highlighted in light gray; tasks related to implementing and monitoring instruction are highlighted
in dark gray. Tasks with higher frequency lie towards the top left corner of each treemap.

Instructional Tasks
Assist students
Create materials
Evaluate learning
Find materials
Modify materials
Organize lessons
Practice materials
Present information
Review materials

www.manaraa.com

208

Ms. Jones did not discuss finding materials. During the study, she was in her third year of

using materials created by her volunteers in the 2013-2014 school year. A remark offered in the

fall semester suggests she may have been satisfied with the materials and did not need to find

other materials for her course:

This was prepared about three years ago, so the volunteers came up with the projects and

the rubrics, and it was also following the structure of CS 10 at Berkeley. And then they

have prepared most of the materials - like the paper notes, and then I would tweak it…It

has reached a point now where it is the fifth time we are doing it, so we have all the

materials set and we have tweaked it enough where I just do everything, and the

volunteers just show up. We have one common agenda where I will write what we are

doing that day, and if they want to see, they can look at it, otherwise they just show up

and then they help. (Ms. Jones, October 26, 2015)

Ms. Jones did not discuss reviewing materials, but she did discuss the related task of practicing

materials. Similarly, Mr. Edwards did not explicitly discuss modifying materials, although he did

discuss the related task of finding materials. He also did not discuss practicing materials, but he

did discuss the similar task of reviewing materials. So, while Mr. Edwards and Ms. Jones did not

discuss all the teaching tasks covered by the coding scheme, they did discuss other tasks that

involved interacting with pedagogical materials in similar ways.

Second, when looking at the top two most frequently discussed tasks for each teacher,

which accounted for between 33% to 56% of units, three patterns emerged. These patterns, a

focus on (a) lesson planning, (b) lesson delivery, or (c) both types of responsibilities, seem to

relate to the number of years teachers have used the TEALS curriculum. Mr. Perez’ most

www.manaraa.com

209

frequently discussed tasks related to lesson planning and he was in his first year teaching the

Intro curriculum. Ms. Robinson, Mr. Miller, and Ms. King’s most frequently discussed tasks

related to lesson delivery, and they were using the same TEALS curriculum they used the

previous school year. Lastly, Mr. Edwards and Ms. Jones’ most frequently discussed tasks

included one lesson delivery task and one lesson planning task. Mr. Edwards and Ms. Jones were

the furthest along in the TEALS program, at years 4 and 3 respectively. This suggests there may

be a learning progression related to curricular knowledge where teachers first focus on lesson

planning when they use a curriculum for the first time, then shift to a focus on lesson delivery as

they gain some experience with the curriculum, and eventually focus on both tasks equally when

they have used the curriculum multiple times.

Summary. The TEALS program provided participants with broad categories of

instructional responsibilities to distribute across their teaching team. In this part of the analysis, I

wanted to understand the nuances of instructional responsibilities teachers undertook. According

to participants’ self-reported data, teachers performed a variety of tasks related to lesson

preparation, lesson delivery, and evaluation of learning. In accordance with the suggested

TEALS co-teaching model, all teachers were heavily involved in managing their classrooms and

partook in lesson delivery. The distribution of other responsibilities differed across teams and

this variation was not simply a factor of each team’s stage in the TEALS program. Participants in

teacher-led teams were more involved in lesson preparation tasks, but responsibility for

evaluation tasks did not correlate with PD stage.

The results suggest that, within a CS context, directing a computer lab needs to be

considered as an instructional responsibility distinct from lesson delivery because it involves

www.manaraa.com

210

different instructional methods. Also, the task of assisting students might be refined to highlight

different ways of supporting students around CS content. For example, most teachers assisted

students by visiting them at their computers and addressing issues they had with an assignment.

But, in Mr. Miller’s course I observed one instance of volunteers using an authentic disciplinary

practice (i.e., code reviews) to assist students in revising their assignments.

5.4.2. Relationship Between Responsibilities and Teaching Knowledge

The CS PCK development framework I presented in the literature review (see Figure 2.8)

suggests that a reciprocal relationship exists between instructional responsibilities and PCK. That

is, performing instructional responsibilities can support PCK development, and PCK can

influence how instructional responsibilities are implemented. In this section, I explore this

relationship by examining comments participants offered during their interviews.

Creating and modifying instructional materials. Creating and modifying instructional

materials allows participants to work with authentic artifacts of practice, evaluate their utility to

support student understanding, and reflect on how best to present content to students. However,

some teachers found these responsibilities challenging when they had not mastered the content

themselves. For example, Mr. Miller once described a syntax error he made when modifying a

quiz:

I took last year's quiz, and it was half on HTML and half on JavaScript. So I just took

away all the JavaScript questions and added my own CSS questions…Thursday night as I

was correcting it, I realized I made a mistake in writing the code. I forgot the semi-colon

in one place… I kind of wish I had a little more help on that from the volunteers, that

they had taken a look and told me ‘you missed something’. (Mr. Miller, March 28, 2016)

www.manaraa.com

211

While Mr. Miller caught his mistake, he did so only after presenting his modified quiz to

students. Teachers with weaker content knowledge might need additional support around

evaluating the accuracy of their instructional materials. The working style of Ms. Jones and her

volunteers provides an example of how teachers can receive such support in a fashion more

aligned with Ball and Cohen’s model that includes professional discussion centered around

artifacts of practice. This team often reviewed the instructional materials they created or

modified in their weekly Tuesday evening meetings and discussed how to introduce them to

students. Regular conversations around instructional materials could provide a venue for teachers

to critique the adequacy of their resources for supporting student learning and to strengthen their

subject matter knowledge with the support of content experts.

Another factor related to these two responsibilities is time. As Mr. Edwards once said, “I

have been making videos for the kids to watch at home so I can get some of the lecture done that

way…Of course that takes me more time, because it takes me an hour to make a twenty-minute

video. But at least it gives the kids time in class to work together”. Time was a rare commodity

for case study participants who in addition to learning to teach a new discipline were still

involved in teaching other courses in their main disciplines. Mr. Edwards was the furthest along

in the TEALS program and he taught an AP CS course about 20 years ago. Teachers with less

experience might require more time and effort than Mr. Edwards to create instructional materials

from scratch. So, independently creating materials that require intense amounts of preparation

may be less advantageous for transitioning CS teachers, who instead might benefit more from

working collaboratively with volunteers to create or modify resources. While creating and

modifying instructional materials might be difficult for any teacher with limited content

www.manaraa.com

212

knowledge, regardless of their discipline, it may be of greater concern amongst transitioning CS

teachers who have had few prior opportunities to study CS. For these teachers, it may be more

efficacious to rely on existing curricular materials until they become more comfortable with CS

content.

Reviewing instructional materials. Prior to their lessons, participants often looked over

or completed materials they later assigned to students. During a March 2016 interview, Ms.

Robinson discussed how reviewing completed solutions helped her identify salient aspects of the

lesson content that guided her formative assessment of students during lab time:

I had the solution, so I can compare, like ‘OK, well this is what you are supposed to do’. I

mean, I used it as my guide. So I kind of leaned on it, which I really appreciated that

TEALS had the solution. Because sometimes we don't always have solutions to like their

tests, so I have to do the solutions, but this was nice…And I am glad I did look at the

code beforehand because I did notice that they had to use math.random and that gives it

more of a random mix of shuffle. So if they got at least half of activity three which

included the random, I would just move on. (Ms. Robinson, March 28, 2016)

As another example, Mr. Perez discussed how completing solutions himself helped him think

through how to organize and select tasks for his students:

So there's a whole bunch of projects, and part of the reason I didn't introduce them is I

want to go through and do the ones I haven't done yet myself before I give them to

students…So I want to spend some time this weekend figuring out which ones would be

valuable to the students, which ones would be accessible, and then what kind of

sequencing I would want to put on them. Because I know the script variables - they are

www.manaraa.com

213

focused on script variables. The drawing a tic-tac-toe board and the brick wall one are

very focused on abstraction. And then the number guessing game is kind of both. Less

abstraction, but it would be good if they used that. But it is also kind of an encompassing

project. So I would want to think about what order I want these things to go in, and where

I can give students some choice as to what they are doing and where to slow them down.

(Mr. Perez, September 25, 2015)

While reviewing instructional materials seemed to support both Ms. Robinson and Mr. Perez in

critically analyzing project assignments and student work, their level of content knowledge

seemed influential in how they approached this responsibility. Ms. Robinson, who had less

content knowledge, relied on completed solutions. In an interview conducted in December, she

described another instance where she copied code written by a volunteer and used that as a guide

when assisting students during lab time. In contrast, Mr. Perez, who had greater content

knowledge, wanted to complete solutions himself to inform his planning, which he also

mentioned on questionnaires completed in October, February, and March.

A transitioning teacher with a low level of content knowledge might increase their own

content knowledge by completing solutions. However, reviewing solutions completed by more

knowledgeable others might support PCK development by helping teachers identify important

features of problem solutions, which they themselves may not have the content knowledge to

identify. In a co-teaching context like TEALS, volunteers could be especially beneficial in

helping transitioning teachers to review materials and understand the salient aspects of those

materials. Reviewing completed solutions also provides transitioning teachers with the

opportunity to engage in an activity similar to the disciplinary practice of peer review (Hazzan et

www.manaraa.com

214

al., 2015) that they can later use with their own students. Transitioning teachers with a higher

level of content knowledge might benefit in other ways from reviewing instructional materials.

For these teachers, reviewing materials might support PCK development by sparking reflection

around the most appropriate pacing, scaffolding, and organization of their lessons.

Finding materials. TEALS provided complete curricula for the AP and Intro courses,

however four participants, Ms. King, Mr. Edwards, Mr. Miller, and Mr. Perez, supplemented

their courses by finding additional problems and scaffolds online. Sometimes participants found

materials in resources recommended by TEALS, the webpages of other CS teachers, and online

teaching forums. The value of the finding instructional materials for PCK development seemed

variable. For example, Ms. King once discussed how she used a web application designed to

support AP CS A courses to easily identify extra credit assignments for students who were ahead

in her class: “PracticeIt is nice because I don't have to prepare it, I just have to pick the problems

out”. In contrast, Mr. Edwards spent more effort searching for examples of abstract classes:

“And so I've actually been wracking my brain for the last few weeks looking at lots of examples

on the Internet, and I didn't find any that really went beyond just the very, very basics”. Drawing

from materials designated for the course might save teachers time in selecting appropriate

assignments, but it might also require less active noticing and evaluation of those resources. Mr.

Perez and Mr. Miller each discussed materials they found on teacher created sources. For

example, on a questionnaire completed in September 2015 Mr. Perez wrote, “I found sample

scripts with bugs through BJC and other CS teachers, and solved each problem on my own. I

also organized these scripts into a presentation that had them in manageable chunks…These

resources provided the scripts that guide students' thinking to most effectively practice

www.manaraa.com

215

[debugging] Boolean operators, script variables, and for loops.” Their comments suggest that

finding materials through teacher created sources might support PCK development when these

sources also discuss how the materials support student learning and challenges.

Instructional delivery. Presenting ideas in front of the entire class offered multiple

opportunities for all participants to reflect on their content knowledge, pacing, and student

engagement. It seems the immediate feedback teachers received during lesson delivery

encouraged reflection on how to improve their instruction. While delivering lessons, teachers

identified their own errors or received responses from students indicating the need to adjust

instruction. Consider the following excerpts highlighting different ways in which teachers

became aware of errors in their content knowledge while presenting a lesson:

I gave an example [about static binding and dynamic binding] that seemed to contradict

something that I had told the kids the week before, and I didn't even spot that. But one of

my super sharp kids in second period said ‘hey, this seems to contradict’. And I said I

would have to get back to him. Which I am okay with, as long as I have the resources to

find that out. So I am still learning. (Mr. Edwards, February 4, 2016)

I saw as I was working through [the String problems] that I could have made the

Rumpelstiltskin example a little bit better. You saw me change his name to R to illustrate

that, so I should've had a word that had whatever I was searching for. Just the first letter,

so they could've seen that. (Ms. King, September 29, 2016)

www.manaraa.com

216

But what I actually presented, I think I would do it the same kind of way again. There

was that one thing I didn't get to in first period, and I forgot to do it because it just threw

me… OK, so in that very top block there I changed from item 1 equal to 1. I had

somebody tell me how could I make it so that it goes to the else, and he said, oh you

change it to equals 2 or something, but I didn't show [the item-any-of-list block] because

probably that it is just if any of those items is equal to 2 it is going to be true and say

‘eureka’. But it is not that. It is a random choice. The any is not ‘if any of them’, it is a

randomly picked. That word any, I mean, I got thrown by that. I thought it would be

always true. But, oh no it isn't. Oh I see, it is going to randomly pick one of them (Mr.

Miller, November 11, 2015)

Also, delivering lessons in real time gave teachers opportunities to think about pacing. The actual

time spent on different lesson sections served as a comparison against teacher expectations,

providing immediate feedback on how to revise pacing for future lessons and what additional

supports might need to be included for students. Ms. Robinson and Mr. Perez discussed these

topics during second semester interviews:

Well because last week I did cover a topic, but I took the whole period. I didn't want to

take up the whole period. I want to spend 15 minutes and then have them practice. Maybe

I didn't give them enough examples because I wanted to make sure that they had enough

time to practice. So it is like trying to find a medium. And you have to be prepared, and

so I didn't have enough time to quite come up with more examples to show them so they

could understand the concept. (Ms. Robinson, February 24, 2016)

www.manaraa.com

217

The debrief at the end was better than no debrief, and I think it will kind of help students

go back and hear again how do we look at things [at a] table and make sense of the

recursive relationship there, or look at it as a recursive relationship. Like I said, I think it

would have been more effective if I had been able to put up student work rather than just

kind of filling time on my own. (Mr. Perez, March 14, 2016)

Lastly, lesson delivery also provided teachers with immediate feedback from students. Student

feedback helped teachers think of how to present content differently to either keep students

engaged or to think of what supports students needed. Consider the following quotes from Ms.

Jones and Mr. Miller during first semester interviews:

And last year - the first year we taught it, we just took notes straight, and they just fell

asleep. So we had them guessing last year first what shapes the blocks were, help them

stay awake a little bit. And we had it on white boards. People [were using] white boards

in three locations in the room. But I forgot to bring the white boards this year, so I wrote

it on the board, which seemed just as good, so that was fine. (Ms. Jones, September 16,

2015)

I did it a little differently in second period, I made it a working game. So I just kept

clicking on it and showed that it worked. And it was just three lines - three blocks or

something. And then I said, ‘start with this basic framework and you can create your

guessing game’. Because in second period I saw there were quite a few that were a little

lost as to how to begin. (Mr. Miller, October 27, 2015)

www.manaraa.com

218

Evaluation of learning. All teachers were involved with assisting students during class

time and evaluating student learning. These responsibilities offered teachers the opportunity to

see multiple student solutions which helped in identifying misconceptions and more elegant

solutions. For example, Ms. King gave the following example during a December interview,

“And we sort of all as a class realized that we had to find the index, and looking for the index for

the operator should work, and then later on I realized by looking at some student's code that you

could just find the index of the space, and that would work better to break it up.” In CS, problem

solving tasks usually allow for multiple problem-solving approaches. As Ms. King’s quote

demonstrates, the task of evaluating student learning can support teachers in recognizing those

different approaches (not just misconceptions) and developing ways to judge the quality of the

solutions.

Another factor related to this responsibility was the amount of time teachers spent with

individual students during class time. Consider the following comments from Mr. Miller and Mr.

Perez:

And there are times like that where I am walking through the class, and they will say I

don't get it, this isn't working. And I don't always catch it right away. I feel great when I

do. ‘Oh, well, all you have got to do is this and this’, but sometimes it is more complex. I

don't have five minutes to stand there and go, ‘wait, let's see, let me think out’ - so I have

to say, ‘you should go block by block through it and do the same sort of debugging

techniques’. (Mr. Miller, October 2, 2015)

www.manaraa.com

219

It was nice to be able to go and work with the struggling groups knowing that he could go

around and answer and support the other groups in doing things. And that is kind of,

ideally, that is the most important thing for me, in terms of the volunteers. Is that when I

need to focus in and spend a little more time with a group that they can still be there for

the rest. (Mr. Perez, October 27, 2015)

Like most other participants, Mr. Miller spent less time with individual students in class so that

he could circulate to more students and attend to other tasks. Mr. Perez, on the other hand,

preferred to spend more time with individual students, especially those struggling with content,

and let his volunteers circulate around to the rest of the students. The comments from Mr. Miller

and Mr. Perez suggest that extended interaction could allow teachers to explore student work

more deeply and find solutions to support student difficulties. Both styles of interaction can be

useful in CS classrooms. The comment from Mr. Perez showed how volunteers in a co-teaching

model can provide teachers with the flexibility to try the longer interaction style without

worrying about the rest of their class. This may be important for helping transitioning CS

teachers explore and develop mastery using different styles of evaluating student learning in

class without negative side effects to other students.

Other responsibilities. Lastly, while I focused on instructional responsibilities related to

preparing and presenting content to students, teachers also discussed other responsibilities that

seemed to reduce opportunities for engaging in tasks that supported PCK development. As

shown in Figure 5.1 above, teachers were mostly responsible for managing their classrooms.

www.manaraa.com

220

Sometimes while teachers took attendance or passed out TEALS swag, they relegated more

content-focused responsibilities to their volunteers. As Mr. Miller said,

I had a little trouble with timing. I was very happy to have the volunteers there because I

tried to walk around and let them help students, and then I wanted to deal with the raffle,

deal with the warmups, and the one girl who lost her password on the survey. There was

another student who asked to use the printer. So all these little interruptions that I try and

comply and answer to, it takes away from class time. (Mr. Miller, May 13, 2016)

In addition to classroom responsibilities, Ms. Robinson was heavily engaged in the expansion of

CS education in her district. She acknowledged that attending to these advocacy responsibilities

reduced the amount of time she had to focus on learning course content:

So I am like marketing, advertising, promoting, teaching, and getting people to help

because I don't know all of this computer science. I mean I am so fortunate to have my

four engineers. And I am very fortunate to have some kids who are very good at

programming who can help. And so I am pretty spread thin…I am just trying to get the

word out. That is why I don't have that much time to you know even sometimes do the

curriculum. But I am taking advantage of the great volunteers that I have, because they

can deliver. (Ms. Robinson, December 9, 2015)

While she had little time to learn content, advocacy work seemed to keep Ms. Robinson

motivated in her teaching assignment. Other factors, such as motivation, may be as important to

developing and sustaining effective teachers as PCK. Another way in which advocacy work

might support Ms. Robinson is by helping her develop a community of peers also vested in CS

education. Many CS teachers are isolated and belonging to a professional community can help

www.manaraa.com

221

them overcome that isolation (Ni & Guzdial, 2012). Through her advocacy work, Ms. Robinson

connected with other CS teachers in her district which may offer the connection she needs as a

teacher new to CS.

Summary. The exploratory analysis of the relationship between responsibilities and

teaching knowledge suggests that instructional responsibilities assumed while teaching can

support teacher knowledge development in different ways (see Table 5.5). By working with

instructional materials and supporting students, teachers have multiple opportunities to work

with content, confront student understandings, and consider their instructional strategies. Teacher

reflections also suggest that instructional responsibilities support PCK development differentially

depending on content knowledge expertise. Teachers with lower content knowledge can make

errors in their work, may be less able to discern what is important to focus on, and may require

additional time to complete their duties. These teachers may need more guidance in the

responsibilities that relate to choices around content knowledge (e.g., in creating or finding

materials), which can easily be accomplished through a co-teaching relationship in a program

like TEALS. Teachers with greater content knowledge may not need to focus on the accuracy of

content as much and can shift their attention to other areas. They may benefit from working more

closely with content to think about pacing and instructional strategies. Also, they may be able to

engage in responsibilities that are time intensive. These instructional tasks, depending on how

they are implemented, can offer teachers experience with some disciplinary practices important

in CS. While still exploratory, these results may have heuristic value for thinking more about the

relationship between instructional responsibilities and PCK development.

www.manaraa.com

222

Table 5.5

Relationship Between Instructional Responsibilities and Teaching Knowledge
Responsibility Relationship to Teaching Knowledge
Create/modify
materials

 • Weaker content knowledge can lead to mistakes when creating or
modifying materials. Teachers creating or modifying materials might
benefit from a content expert review to bolster content knowledge.

• Creating materials might require more time and content knowledge than
modifying materials.

Review materials • Reviewing completed solution sets can help teachers to identify salient
aspects of lesson content.

• Completing materials can give teachers ideas about organizing tasks but
may require strong content knowledge.

Find materials • Selecting from materials designed for a course can save teachers time,
but might require less evaluation of how those materials support student
learning.

• Teacher created sources might support teacher knowledge development
because they sometimes include discussions on how materials support
student learning and on common student challenges.

Deliver lessons • Delivering lessons helps teachers identify errors in their content
knowledge and to evaluate their expectations for pacing.

• Immediate student feedback helps teachers understand what strategies
are engaging for students.

Evaluate learning • Evaluating learning exposes teachers to many student solutions and helps
them to identify student misconceptions.

• Spending more time with fewer individual students might allow teachers
to probe student understanding more deeply; spending less time with
more individual students might allow teachers to identify the frequency
of student misconceptions.

Non-content duties • Other duties such as classroom management and advocacy take time
away from responsibilities to that develop PCK, but may motivate
teachers to persist in their assignments.

5.5 Discussion

Case study participants were involved in a professional development program where

much of their learning happened during real time classroom teaching as they enacted their

instructional responsibilities. These responsibilities did not simply increase as teachers

www.manaraa.com

223

progressed through the PD stages of the TEALS program. Instead, the ways in which teachers

shared responsibilities with their volunteers varied across stages and across responsibility type.

The data also suggest that (a) instructional responsibilities might vary in the opportunities they

provide for developing PCK expertise and (b) the usefulness of responsibilities might vary based

on a teacher’s content knowledge. The data also highlighted some instructional responsibilities

important to CS teaching (i.e., managing a computer lab, code reviews) that may be new to

transitioning teachers. Delegating these tasks to teachers, drawing on volunteer support where

necessary, may not only help teachers improve their PCK but may also expose teachers to

authentic CS practices that will increase their understanding of the discipline.

Limitations. Given the semi-structured format of the interviews and the focus on

individual lessons, caution should be exercised in interpreting the coded data. First, while some

interview items and open-ended questionnaire items asked teachers explicitly about their lesson

preparation and their role on their TEALS team, teachers also shared examples of their

responsibilities while responding to various other questions making it difficult to compare

responses consistently across teachers. Second, the total number of units where teachers

discussed instructional responsibilities were few, accounting for less than 25% of each teacher’s

total units. Lastly, case study visits focused on individual lessons and not entire units; it is

possible that teachers performed other responsibilities outside of the study visits that were not

discussed during interviews. Designing more systematic ways of eliciting the ways instructional

responsibilities supported teaching knowledge and the ways teacher knowledge constrained

instructional responsibilities is an obvious next step for this work.

www.manaraa.com

224

CHAPTER 6. CONFIDENCE, EPISTEMOLOGIES, AND TEACHING

6.1 Introduction

An understanding of teacher knowledge development must consider factors beyond PCK

and instructional responsibilities that also influence what teachers can or will do to improve their

craft. Individual traits such as orientations to teaching, prior experiences, and personal

characteristics influence the instructional strategies teachers use (Magnusson et al., 1999; S. Park

& Oliver, 2008). Confidence determines educators’ willingness to try new teaching approaches

and allow students more authority in their classrooms (Goldsmith et al., 2014). Teaching also

differs by discipline and the teaching subculture of each discipline relates to educators’ beliefs,

norms, approaches to teaching, collaboration, and leadership within schools (Grossman &

Stodolsky, 1995; Spillane, 2005; van Veen, Sleegers, Bergen, & Klaassen, 2001). These factors

raise questions for teacher knowledge development of experienced educators who are between

disciplines. Do their existing beliefs about teaching and learning carry into their new courses or

do they assume new epistemologies? How are instructional decisions made when educators are

confident about certain aspects of their teaching but hesitant about others?

Although epistemological beliefs and confidence were not an initial focus of this study,

they appeared prominently in comments teachers made during the study when they explained

their selection of instructional tasks and the focus of their professional activities. To investigate

epistemological beliefs and confidence more systematically, I asked participants to rate their

confidence at the beginning of each case study visit and to complete four, open-ended items on a

teaching beliefs questionnaire at the end of the school year. The specific question I explored with

www.manaraa.com

225

these data was: how do confidence and epistemological beliefs influence instructional

responsibilities?

6.2 Research on Confidence and Epistemologies

6.2.1. Confidence

Teaching confidence describes a “teacher’s belief in his or her capability to organize and

execute courses of action required to successfully accomplish a specific teaching task in a

particular context” (Tschannen-Moran, Hoy, & Hoy, 1998, p. 233). Educators teaching courses

outside their area of expertise, like the participants in this study, may have lower confidence in

their ability to perform instructional responsibilities than they do in their regular courses (Ross et

al., 1999). Lack of confidence can lead teachers to avoid teaching, rely on prepared instructional

materials, and minimize teacher-student discourse (Harlen & Holroyd, 1997; Schneider &

Plasman, 2011). Some ways that teaching confidence can improve are through strengthening

content knowledge and having successful teaching experiences (as evidenced in Swackhamer et

al., 2009; Tschannen-Moran et al., 1998). Ni and colleagues (Morrison et al., 2012; Ni, 2009; Ni

& Guzdial, 2012) have explored the role of confidence in CS teacher development. Similar to

findings from other disciplines, they found that lack of confidence prevented some teachers from

implementing contextualized computing curricula, confidence was a factor in developing an

identity as a CS teacher, and confidence can be improved through participation in a professional

learning community. The co-teaching model used in the TEALS program provides opportunities

for teachers to strengthen their confidence in teaching CS. Through collaborations with one or

more volunteers, transitioning CS teachers in the TEALS program have access to peers with

www.manaraa.com

226

whom they can discuss issues of practice on a regular basis and build relationships around their

CS teaching.

6.2.2. Epistemological Beliefs

The beliefs teachers bring into the classroom about the nature and acquisition of

knowledge, or their epistemic beliefs (Chinn et al., 2011), will influence the decisions and

actions they make. Scholars studying epistemological beliefs have categorized teaching

viewpoints on a spectrum ranging from more teacher-focused, didactic beliefs to more student-

focused, constructivist beliefs (e.g., Brockmeyer, 1998; Hashweh, 1996; Luft & Roehrig, 2007;

Peterson, Fennema, Carpenter, & Loef, 1989; Simmons et al., 1999). Teacher-focused, didactic

beliefs tend to view teachers as conveyors of knowledge and students as receptacles of that

knowledge. Student-focused, constructivist beliefs view students as constructors of their

knowledge and teachers as facilitators of this process. Some researchers have found that teachers

espousing more constructivist views of teaching and learning notice students’ conceptions more

and use more varied instructional strategies (Hashweh, 1996; Peterson et al., 1989).

Epistemological beliefs of computing educators is an understudied topic. Some prior

work has identified the ideas teachers possess about their discipline (e.g., Carbone, Mannila, &

Fitzgerald, 2007; Lewis, Jackson, & Waite, 2010). One study conducted by Kordaki (2013)

explored the relationship between beliefs and teaching practices of CS educators. Using results

from a multiple case study of twenty-five high school computing teachers in Greece, she

identified two prominent belief types: empowering beliefs more aligned with constructivist

views and constraining beliefs more aligned with behaviorist views. An example of an

empowering belief Kordaki observed was “development of algorithmic thinking and high

www.manaraa.com

227

cognitive skills are appropriate competences for students as learners in computing” (2013, p.

150). An example of a constraining belief she observed was “direct teaching is appropriate when

one has to teach a specific curriculum, with specific learning aims and within specific time

limits” (2013, p. 151). She also identified five instructional approaches computing teachers used

that varied in their amounts of direct teaching, student participation, and project work. Her

analysis showed that teachers often held multiple yet conflicting beliefs, teachers’ beliefs aligned

with their practices, and teachers’ self-described practices misaligned with observation data.

Kordaki posited these conflicting patterns resulted from contextual factors (e.g., institutional

barriers such as the elective status of courses, the rapidly evolving nature of computing) that also

influenced their instructional actions.

6.3 Methods

6.3.1. Participants

Six teachers participated in this component of the case study. As described in earlier

chapters, these teachers varied in their PD stages, CS PCK, CS content knowledge, and non-CS

teaching assignments. Ms. Robinson was in the volunteer-led PD stage. She seemed to have

lower levels of PCK and content knowledge compared to other teachers, and she taught

geometry. Mr. Miller was in the collaborative PD stage. He demonstrated some PCK and

appeared to have a partial understanding of CS content, and he taught algebra. Ms. Jones was

also in the collaborative PD stage. She demonstrated some PCK and a strong understanding of

CS content, and she taught trigonometry. Ms. King was in the teacher-led PD stage. She

demonstrated strong PCK and a partial understanding of CS content, and she taught support

mathematics. Mr. Perez and Mr. Edwards were both in the teacher-led PD stage. Neither

www.manaraa.com

228

participant completed the study tasks related to teacher knowledge, but both expressed

confidence in their ability to independently lead their CS courses. Mr. Perez previously tutored

college students in CS, was involved in the BJC community, and taught algebra. Mr. Edwards

taught the AP course about 25 years ago, was in his fourth year with TEALS, and taught digital

arts and animation.

6.3.2. Data Collection and Analysis

Two types of data were collected to explore teachers’ epistemological beliefs and their

teaching confidence. The data sources included close-ended questionnaire items collected at the

start of each case study visit and an epistemological beliefs questionnaire administered at the end

of the school year.

Confidence ratings. As a proxy for measuring teaching confidence, participants were

asked to rate their comfort with course topics and their preparedness to guide student learning of

those topics on a questionnaire administered before each visit. First, teachers identified the units

their class worked on during the visits and then answered: (1) how comfortable are you with the

unit? and (2) how well prepared do you feel to guide student learning of this content? Rating

options were not at all, somewhat, and completely. I converted these levels into numeric values

(i.e., -1, 0, and 1) in order to average feelings of comfort and preparedness over the school year.

Teachers were also asked to explain their interpretation of the rating levels during interviews.

Epistemological beliefs questionnaire. I asked teachers to answer four open-ended

items about their epistemological beliefs drawn from the Teacher Beliefs Interview (Luft &

Roehrig, 2007): how do you maximize student learning in your classroom?; how do your

students learn computer science best?; how do you describe your role as a teacher?; and in the

www.manaraa.com

229

school setting, how do you decide what to teach and what not to teach? Luft and Roehrig

identified five categories of beliefs (see Table 6.1). The definitions of two terms in their

categorization scheme, responsive and reform-based, differ somewhat from the usage of these

Table 6.1

Teaching Belief Categories (based on Wong & Luft, 2015, p. 627)

Category Orientation Description
Traditional Teacher-centered Focus is on teacher providing information and resources in a

structured manner and environment
Instructive Teacher-centered Teacher decides experiences and reacts based on subjective

evaluation of student actions and performance
Transitional Both teacher-

centered and
student-centered

 Emphasis on teacher–student relationship that includes subjective
and affective components that does not necessarily focus on
teaching or learning of [computer] science

Interactive1 Student-centered Centers on opportunities and value of collaboration between
students and teacher, as well as between students as peers. Focus
is on development of [computer] science learning and content
knowledge

Responsive2 Student-centered Focus on individualized and student-centered methods of learning
that considers student responses, interests, and abilities. Promotes
a collaborative environment in which students apply skills and
knowledge to novel situations

Wong and Luft originally used the terms responsive1 (instead of interactive) and reform-based2 (instead
of responsive) in their categorization scheme.

terms in other teacher learning literature. In the broader literature, responsive teaching

“foregrounds the substance of students’ disciplinary ideas, recognize[s] the disciplinary

connections within students’ ideas, and take[s] up and pursue the substance of students’ ideas”

(Robertson, Atkins, & Levin, 2015, p. 27). This definition aligns more with Luft and Roehrig’s

description of reform-based beliefs that focus on student responses, interests, and abilities and

less with their description of responsive beliefs that center on interactions amongst students and

between teachers and students. The key distinction is that one category (i.e., responsive, or what

Luft and Roehrig term reform-based) goes beyond a simple focus on ensuring students share

www.manaraa.com

230

their ideas to a focus on pursuing those ideas. To distinguish the nuances of these terms, I offer

the categories of interactive to describe beliefs centered on providing opportunities of students to

exchange ideas and responsive to describe beliefs centered on taking up students’ ideas in

instruction. This modified coding scheme was used to code participants’ questionnaire responses.

Based on Kordaki’s (2013) finding that CS teachers carried mixed beliefs, I decided that

participant responses could receive multiple codes if teachers expressed more than one idea in

their comments. Interview data were used to supplement their responses and to glean the

epistemological beliefs of Mr. Edwards and Mr. Perez who did not complete the questionnaire.

Before presenting the results, it is worth noting that within the CS education community today,

student-centered beliefs are encouraged and reflected in both teacher training materials (e.g.,

active learning promoted by Hazzan et al., 2015) and course frameworks (e.g., inquiry practices

in the ECS curriculum; Margolis et al., 2014).

6.4 Results

6.4.1. Feelings of Confidence

Averages of teachers’ self-reported ratings are depicted in Figure 6.1. Below I describe

how teachers made sense of comfort and preparedness, trends across professional development

stage and across semesters, and factors influencing self-reported ratings of comfort and

preparedness.

Meanings of comfort and preparedness. Teacher responses to the confidence items

suggest that comfort and preparedness were interpreted as distinct but related constructs. If

teachers perceived these constructs as the same, levels of comfort and preparedness would be

identical at each visit. While teachers frequently selected the same ratings for comfort and

www.manaraa.com

231

preparedness at each visit, only Ms. King did so for all visits. During interviews at the beginning

of the second semester, we asked each teacher to explain how they interpreted comfort,

preparedness, and their corresponding response scales. Comfort seemed to capture confidence in

one’s own content knowledge and experience making use of content knowledge to solve

problems, while preparedness seemed to relate to prior experience teaching the content. For

some teachers, the distinction between comfort and preparedness was less delineated and

confidence seemed to describe their assuredness with applying content knowledge specifically to

teaching. Table 6.2 provides examples of ways teachers interpreted comfort and preparedness.

Patterns of comfort and preparedness. When looking at the data in Figure 6.1 with

respect to teachers’ PD stage, two interesting patterns emerge. First, teachers in the teacher-led

phase rated their comfort and preparedness higher than teachers in the volunteer-led and

collaborative phases. Second, teachers in the teacher-led phase rated their comfort higher than or

equal to their preparedness; teachers in the volunteer-led and collaborative phases rated their

preparedness higher than their comfort. So, participants in the teacher-led group seem more

confident about teaching the topics covered during their case study visits.

Ratings were also disaggregated by semester to determine the impact of changes in

curriculum and teaching roles on participants’ confidence levels (see Figure 6.2). Ms. King and

Mr. Miller rated their comfort and preparedness consistently across both semesters. The courses

they delivered during this study were similar to the courses they delivered the prior school year

with minor modifications. Both Ms. Jones and Mr. Edwards rated their confidence in the second

semester lower than their confidence in the first semester. The decrease reported by Ms. Jones

can be explained by her introduction of a new curriculum during the second semester. In the past,

www.manaraa.com

232

Ms. Jones and her volunteers delivered two semesters of the Intro course each year. During this

study, she taught a Java curriculum during the second semester for the first time. In describing

one of her Java lessons, she commented “I would say I definitely feel uncomfortable because I

am just one or two days ahead of the students…Basically if I haven’t taught it yet, I am

uncomfortable”.

www.manaraa.com

233

Figure 6.1. Participants’ self-reported ratings of comfort and preparedness averaged across the school year. Rating levels are not at all
(-1), somewhat (0), and completely (1).

www.manaraa.com

234

Table 6.2

Teacher Explanations of Comfort and Preparedness
Confidence Rating Explanation

Somewhat comfortable
Completely prepared

 Interviewer: What do you mean by somewhat comfortable?

Mr. Miller: I am afraid somebody is going to ask me a question
and I won't remember. So it happened yesterday [me and the
students] found what they did wrong. It was a silly thing of
course, a capital letter that I didn't notice. So, if I was really
comfortable I would just catch it all the time and remember
everything, but since I haven't taught it for a year, I forgot
some things.

Interviewer: And then for you said completely prepared, so
how is that?

Mr. Miller: I felt like I knew what I was going to be doing with
them…I was thinking that was more to follow the curriculum.

Completely comfortable
Somewhat prepared

 Interviewer: You said you are completely comfortable but
somewhat prepared.

Mr. Perez: I've done the Explore task myself, but having not
led students through it before, I didn't feel like I had a sense of
what they were going to get stuck on and what supports they
might need versus where it would be good to let them struggle.
So, that’s why I put somewhat prepared. First time I have done
it.

Somewhat comfortable
Somewhat prepared

 Interviewer: You said you were somewhat comfortable and
prepared for the topic. What else would make very comfortable
and prepared for it?

Ms. King: There are a couple of those holes like that, where if I
try really hard, I can get it right, but I am not sure I totally
understand why it is working, and that is where I do go to the
volunteers, either in front of the kids or privately…There is
nothing that I am not comfortable enough to teach, but there
are some things that I feel less on top off, so those I give them
middle.

www.manaraa.com

235

Figure 6.2. Participants’ self-reported ratings of comfort and preparedness averaged across fall
and spring semesters. Rating levels are not at all (-1), somewhat (0), and completely (1).

Mr. Edwards’s lower ratings in the second semester seem to contradict comments he offered

during interviews about his preparedness to teach the AP course independently. For example,

when asked how he defined comfortable and prepared he said, “this is my fourth year [teaching

AP], so I don't think there is any part of the course that I would say not at all. So, I would say for

most of the course I feel completely prepared, just based on past experiences”. Also, he rated

himself somewhat prepared and comfortable with topics he covered in prior visits (i.e., arrays

and ArrayLists; inheritance) and with a lesson centered around reviewing for the AP exam, a

www.manaraa.com

236

review he had done the prior three years. It is possible that Mr. Edwards considered other factors

besides content knowledge and previous teaching experience when rating his level of confidence.

Lastly, Ms. Robinson’s confidence rating increased during the spring semester and Mr.

Perez’ feelings of comfort increased while his feelings of preparedness decreased. These changes

seem to reflect more of a sensitivity to averaging ratings across a small number of visits than to

actual changes in the teachers’ feelings of comfort and preparedness. For example, Ms. Robinson

rated herself as somewhat prepared and as somewhat or not at all comfortable for five of her six

lessons. She rated herself completely prepared and completely comfortable during her last visit

where students worked on final projects. This class session, however, was qualitatively different

than prior sessions. It did not focus on the AP curriculum, students explored projects of their own

choosing, and “some advanced students were doing [projects] that are beyond [her] right now,

i.e. String Theory or programming in Java to make some really cool designs”. Without

considering this visit, Ms. Robinson’s fall and spring ratings would be similar and hover around

the rating level of somewhat. Mr. Perez only completed five of his pre-visit questionnaires and

ratings from his sixth visit could shift the average ratings shown on Figure 6.2. For example, if

he rated himself as somewhat comfortable and completely prepared for the last visit, ratings

across fall and spring semester would look identical.

Factors influencing confidence. Teachers in the volunteer-led and collaborative PD

stages said that more experience completing student tasks and more experience presenting ideas

to students would increase their feelings of comfort and preparedness. However, division of

instructional responsibilities sometimes prevented teachers from having these experiences,

especially when teachers offloaded confidence building activities to their volunteers to attend to

www.manaraa.com

237

other responsibilities or due to insufficient preparation time. The following comment made by

Mr. Miller illustrates this idea:

 [I would feel more comfortable or prepared] if I actually did the lessons myself. I haven't

written the program, or, I should sit down and, maybe this summer, actually go through

and…But if I had more time, ideally I would do all this stuff myself. (Mr. Miller, May

13, 2016)

Participants in the teacher-led PD stage generally felt confident in their teaching abilities and did

not discuss what would increase their feelings of comfort and preparedness. Instead, they

provided examples of how assisting students, presenting ideas, and modifying materials provided

opportunities that helped them to reflect on and improve upon their craft. The following quotes

from Ms. King highlight this idea:

Then when I checked their answers, one of the things I was checking was that they had

used the limit correctly and in the way that it was most readable. Last year I would have

just checked that it was correct, this year I am a little more precise about ‘well, it works

fine that way, but it would be better if you did it this way’ (Ms. King, October 30, 2015)

I do want to say because you have been listening to me for two years that I am feeling

much more confident. I certainly knew the answers to those questions and why. And I

know how to do the [free response questions on the AP exam], so I don't feel quite as

much like I am winging it anymore, but more definitive…I am sure that when I talk about

things I am less hesitant, and [the students] can tell that. So it is going well. (Ms. King,

April 15, 2016)

www.manaraa.com

238

So, while instructional responsibilities like completing student tasks, modifying materials,

assisting students, and presenting ideas can provide fruitful opportunities for teachers to gain

experience and increase their confidence, teachers may lose out on these learning opportunities if

these responsibilities are given to volunteers. TEALS encourages teaching teams to decide for

themselves how they will work together in their CS classrooms, and data gathered during this

study show teams vary in how they distribute instructional responsibilities between teachers and

volunteers. These findings suggest that teachers may benefit more if teaching teams are

encouraged to delegate confidence-building tasks to teachers and not to volunteers.

Summary. It appears that self-reported ratings of comfort and preparedness can be used

to understand participants’ feelings of confidence of their content knowledge and their ability to

teach content to students. Participants in the teacher-led PD stage tended to report higher levels

of confidence than teachers in the volunteer-led or collaborative PD stages, which might be

explained by them taking on more responsibilities that support confidence building. Making use

of teacher knowledge supported teachers in increasing their feelings of confidence, however,

these opportunities were sometimes missed because they were delegated to volunteers.

6.4.2. Beliefs about Teaching and Learning

Beliefs about teaching. All teachers expressed contrasting ideas when commenting on

beliefs about teaching and there were no noticeable patterns based on the type of co-teaching

model implemented (see Figure 6.3). When asked how they make decisions about what to teach,

all respondents expressed traditional beliefs saying they used their curriculum as a guidepost. As

Ms. King wrote, “I stick pretty closely to the AP curriculum, since that’s the measuring stick.

This is similar to using the California standards for algebra or other math courses”. Several

www.manaraa.com

239

teachers had opportunities to teach material beyond their curriculum, and here they expressed

different ideas about deciding what to teach. Ms. Jones and her volunteers created a semester-

long introduction to Java to follow their first semester Intro course. In describing the

development of this course, she remarked that “decisions were mostly based on the volunteer’s

wisdom and what students would need to be prepared for taking AP CS in the future”, an

instructive belief. Ms. King and Ms. Robinson expressed interactive beliefs when discussing how

they structured the weeks after the AP exam; both gave students time to identify and explore

computing topics of interest. In contrast, when asked to describe their roles as teachers,

participants offered more student-centered aligned beliefs. Ms. Jones saw herself as responsible

Figure 6.3. Participants’ beliefs about teaching categorized using modified version of Luft and
Roehrig’s (2007) five-category belief coding scheme. Each response could receive multiple
belief codes.for providing a safe and structured learning environment for her students, a

www.manaraa.com

240

transitional belief. Ms. Robinson saw herself as a collaborator who helps and is helped by her

students, an interactive belief. She said, “students and I worked together to help each other.

There are a handful of students who are very proficient in CS, so I tap into their knowledge for

assistance to help the rest of the class”. Lastly, both Ms. King and Mr. Miller saw themselves as

guides to facilitate students’ own learning, a responsive belief. As Mr. Miller commented, “I

describe my role as a resource guide. Students really only learn and retain what they learn by

doing, by working to complete a task. I believe my role is to be a facilitator of this productive

struggle”.

Curriculum goals appeared to create tension between participants’ beliefs about teaching

and their instructional practices. This friction was notable in Ms. King who commented about her

struggles to balance her preferred style of teaching with the structure of the AP curriculum:

As I become more familiar with the AP, I am thinking more about [how the AP asks

questions], and less about the way I learned to code, which is, “I have to do something,

how do I do it, oh this works”. So that was how I taught the first couple years. I am not a

trained engineer, I was self-taught, so I used those skills, but they don’t give you the best

written and most efficient code…What I don't like about teaching the AP is that we stop

having fun while we review. What I do like about the AP is that it structures the

curriculum, emphasizes what I should be emphasizing. So I may not always agree on

what it emphasizes, but maybe 8 out of 10 [times] I do…If I knew a little more, I'd be

pass the AP, and I'd be wanting to teach it my own way. (Ms. King, February 5, 2016)

Mr. Edwards, who did not complete the TBI questionnaire, made similar comments in his

interviews, expressing discontent with the lack of creative expression in the AP curriculum. He

www.manaraa.com

241

responded to this conflict by selecting programming tools he thought would be more engaging

for students and interspersing the AP curriculum with projects:

They can take all the code they have written in class so far, drop it in Processing, and it

will run because Processing really is Java. It just makes graphics easier…I think that is an

effective way to teach recursion…I think it is [more fun] to sort red squares on the

checkerboard than it is to sort just numbers on the console. I am very visual. I find that

more interesting, so I think some of the kids will find that more interesting. I think it is a

real weakness in the AP course. The entire thing is just done in the console. And so this is

just one of the few places that we can really break out. (Mr. Edwards, March 9, 2016)

So, the two TBI items related to beliefs about teaching evoked statements reflecting different

belief categories. These differences seem to reflect concomitant ideas stemming from teachers’

own beliefs and from external factors to which teachers are accountable that influenced what

teachers did in the classroom. Teachers sometimes bent their practices to accommodate external

factors and other times they tried to weave their own beliefs into classroom activities, what Fang

(1996) refers to as the inconsistency thesis. This need to accommodate external factors might

also extend into the decisions teachers made regarding their co-teaching responsibilities and

interactions. For example, Mr. Miller reflected on an instance where he followed his volunteer’s

decision despite wanting to start a lesson with a warm-up activity:

I like to start the class with my warm-up, my do-now. And my volunteer said to me last

night when we were planning, he said we are really going to need a lot of time to explain

and to demonstrate and we won't have time for a warm-up. And I kind of agree, although

I feel like those words up on the board, I would have rather said take 3 minutes and

www.manaraa.com

242

define them on your - or, yeah I had it - that is exactly what I was planning to do was use

those words and say which blocks involve user input, instead of just call on somebody

and say it - ask it. So that everybody would be doing it…But that way everybody is on

task doing things. I like the whole idea of starting with something that everyone has to

do. So, that is the change I would have made…we could have had a warm up. (Mr.

Miller, October 2, 2015)

This is all to say that in interpreting the data gathered from teachers participating in this study,

one must consider that teachers did not always take actions aligned with their beliefs, they were

also responding to the multiple demands of their students, volunteers, and curriculum.

Beliefs about learning. Teachers expressed diverse beliefs about student learning that

were mostly transitional and interactive (see Figure 6.4). Again, no noticeable patterns were

observed based on PD stage. When asked how students learn computer science best, all teachers

said “by doing” or “by practice”, a transitional belief. However, for most teachers, this was not

sufficient. For example, Mr. Miller distinguished programming as a part of computer science and

offered a comment reflecting more interactive beliefs about learning computer science:

My students learn "Computer Programming" best by trial and error performance. They

must be able to write code, recognize errors and then debug them, making corrections to

their code. "Computer Science", however, incorporates much more than programming.

The best way to learn CS is to research aspects of interest to students and to recognize

how what they learn can apply to their daily life. To help students recognize such useful

applications, a class "discussion" is often helpful.

www.manaraa.com

243

Ms. Robinson also expressed an interactive belief that centered around students making sense of

computer science by sharing their ideas with others. She thought students also learned computer

science by simulating programs with their peers and giving short presentations about topics they

researched. In contrast, Ms. Jones expressed a more traditional belief saying that in addition to

practice, students “need some guidance and direct teaching. After that, working on projects in lab

time and generating solutions on their own seems to work.”

Figure 6.4. Participants’ beliefs about student learning categorized using a modified version of
Luft and Roehrig’s (2007) five-category belief coding scheme. Each response could receive
multiple belief codes.

www.manaraa.com

244

When asked how they maximize student learning, teachers expressed a range of beliefs

from traditional viewpoints to interactive viewpoints. Ms. King, Mr. Miller, and Ms. Jones

maximize learning by providing student opportunities to interact with and learn from each other,

an interactive belief. For example, Mr. Miller said, “to maximize student learning, I encourage

students to work together with others in completing a task. Unfortunately, this is easier to do in

my math classes than in my CS classes. I believe that working with peers allows students to

understand concepts well enough to explain them to their peers.” Both Mr. Edwards and Mr.

Perez, who did not complete the TBI, expressed similar comments in their interviews:

I have been using pair programming throughout the year. I use complex instruction group

work in my other classes, and I think the ability to have another person to bounce ideas

off of…and to be forced to explain things to is really powerful for students working

through their ideas and developing a deep understanding. (Mr. Perez, March 14, 2016)

I like having kids come up and try to put answers on the board. I thought Student A and

Student B did a good job on that. However, sometimes that takes more time. It is just

quicker for me to throw up an answer. I think it is valuable, though, because sometimes

having the kids come up not only helps those two, but it also, you know, kids might be

paying a little bit more attention. (Mr. Edwards, November 30, 2015)

Mr. Miller, Ms. Jones, and Ms. Robinson also maximize student learning by creating classroom

environments for students that are safe or involve multiple activities, transitional beliefs. Both

Ms. King and Ms. Jones also expressed instructive ideas related to monitoring students to

maximize learning (e.g., using short deadlines, prodding students who are off task, giving

www.manaraa.com

245

assessments). Ms. Jones also discussed traditional ideas related to creating a structured

environment for learning by using a routine every day and providing prepared lessons.

Responses to TBI items related to beliefs about student learning show that case study

teachers believed students learn computer science best with a variety of activities that include

some form of peer exchange and the space to pursue topics of interest. These student-centered

beliefs were reflected in the setup of the teachers’ classrooms and the structure of their

instructional activities. For example, Ms. King implemented a flipped classroom where students

watched lectures from an online course at home and spent the majority of class time working on

projects collaboratively and receiving support from the teacher and volunteers. Ms. Jones

frequently incorporated peer grading in her labs where students had to evaluate each other’s

programs against a rubric. Mr. Edwards purposely arranged the physical space of his classroom

to facilitate different types of activities:

So the reason I have the room set up [with desks in the middle and computers on the

perimeter] is …so I can have two groups, and I can talk with one group about one thing

while the other group is at the computer, and then I switch back…It makes for a much,

much more chaotic teaching environment, but I feel like it gives all the kids - they can

pursue what interests them most…I hope this has been the most effective year we have

had in dealing with this issue. The reason this is an issue is because unlike where

everybody who is in pre-calc just finished algebra II…everybody comes in from

whatever background…I think that is going to be likely in most computer programming

AP classes nationally, until - if we had a series of pre-classes that were required, that

would cut down on that a lot. (Mr. Edwards, March 9, 2016)

www.manaraa.com

246

While the use of various activities aligned with teachers’ beliefs of student learning, it did

present teachers with a management challenge. Using various activities allowed students to move

at their own pace, which also meant students needed a lot of individualized support. As Mr.

Perez once said, “there was only one of me and nine different groups of students with different

needs.” This is where teachers benefitted from volunteer support, distributing the task of

assisting students across the instructional team. So, while teachers arranged their classrooms to

align with their beliefs about student learning, it created a demand for attention from students

that was fulfilled with volunteer support.

Epistemological beliefs across domains. An underlying premise of the TEALS model is

that teachers will draw on their existing pedagogical knowledge when they begin teaching

computer science. Does this extend to their epistemological beliefs as well? Each teacher was

visited once in a non-CS class and during these visits several teachers compared their teaching

across disciplines. Ms. King taught support mathematics classes in addition to the AP CS course.

Her teaching in the AP CS course seemed more aligned with her transitional and student-

centered beliefs than her math teaching. She preferred to “demonstrate how to do something, and

then they work independently while I come around and help them”, but found this was easier to

accomplish in her CS classes because students chose to enroll in the class. She believed students

in her mathematics course lacked motivation which led her to use more direct instruction. Mr.

Edwards, who also taught animation and web design courses, appeared to have responsive

beliefs and he designed his classes so that “kids are doing what they want to do”. For him, his

AP CS course was less aligned with his beliefs because “the AP curriculum is pretty dry…it is

almost like you are studying for this test, you are learning a specific set of skills, and there is not

www.manaraa.com

247

a lot of room for creativity, for getting outside the bounds of this very narrow scope of the

course. I don't know, some teachers might consider that more fun, but I really enjoy the other

classes more.” Both Ms. Jones and Ms. Robinson discussed how the nature of computer science

and mathematics at the high school level differed, creating a need for different styles of teaching.

For example, Ms. Jones commented, “I would say in computer science, it is probably more big

picture problem solving, whereas in math, it is more procedural and less creative…The strategies

are different because in computer class it is mostly lab time, so it is a lot of one-on-one [time] or

they have to talk to their neighbor. It is just learning through doing. Whereas like in math, a lot

of it is just like teacher guided practice.” These comments suggest that epistemological beliefs

vary across disciplines and that the nature of disciplines and students’ abilities and motivation

strongly influence instructional choices implemented inside classrooms.

Summary. Teachers expressed mostly student-centered beliefs about teaching and

learning. Participant comments showed some alignment with the core practices of the K-12

Computer Science Framework, especially the practices of collaborating around computing and

communicating about computing. Ms. Jones differed slightly from the other teachers with a mix

of both teacher-centered and student-centered beliefs. Her teacher-centered beliefs appeared

more strongly in her mathematics teaching. There were no noticeable differences between beliefs

held by teachers based on their PD stage. Comments on the TBI and during interviews suggest

that external factors such as the curriculum, students’ ability levels and interest, volunteer

preferences, and the physical space of their classrooms sometimes influenced teachers to make

www.manaraa.com

248

instructional decisions that conflicted with their preferred beliefs. This was particularly apparent

when teachers compared their computer science teaching to their teaching in other disciplines.

Both Ms. King and Ms. Jones expressed discipline dependent beliefs, while Mr. Edwards

appeared to carry consistent beliefs across all his courses. He was the only teacher to say his CS

course felt more restrictive than his non-CS courses. The data gathered about teachers’

epistemological beliefs and their influence on instructional practices have implications for

current efforts to expand CS across the nation. While teachers possessed epistemological beliefs

aligned with the student-centered pedagogies promoted by the CS education community,

contextual factors still influenced instructional decisions that conflicted with these beliefs (e.g.,

participants modifying their typical teaching practices when reviewing for the AP exam).

Transitioning CS teachers who are placed in more restrictive courses like the AP course may

need additional supports to successfully navigate tensions between the demands of course and

student-centered CS teaching practices.

6.5 Discussion

In this chapter I explored participants’ teacher confidence and epistemological beliefs and

their relationship to instructional responsibilities. Self-reported participant data revealed at least

two sources of teacher confidence: content knowledge and teaching experience. Data gathered

from the beliefs questionnaire showed participants held mostly student-centered beliefs about

learning but disparate beliefs about teaching that reflected tension between their ideas and

external pressures. Context also influenced confidence and beliefs. For example, the results from

Ms. Jones showed that confidence decreased when she entered a new teaching context (e.g.,

teaching Java). Also, while sharing instructional responsibilities with volunteers supported

www.manaraa.com

249

participants in balancing their teaching tasks, this distribution of responsibilities sometimes took

away opportunities that could support teacher confidence. Lastly, when visited in their non-CS

courses, some teachers discussed different epistemic beliefs that influenced their instructional

decisions.Limitations. I measured teaching confidence using two closed-ended questionnaire

items focused on comfort with content and ability to guide student learning. Confidence,

however, also involves teachers’ feelings of efficacy towards other and more fine grained

teaching responsibilities such as motivating students, gauging student understanding, and

providing alternative explanations (Tschannen-Moran & Hoy, 2001). Other factors involved in

confidence might explain Mr. Edwards’ discrepant results. So, the findings here might present a

narrow and incomplete view of participants’ teaching confidence. Future work in this area might

explore the other sources of confidence within CS teaching.

Regarding the teacher belief data, teachers were asked about their beliefs once at the end

of the school year. Capturing teachers’ beliefs across multiple months could provide more insight

into the consistency, or shifts, of the viewpoints observed in this study. Here, there is no

comparison against which to judge the teachers’ responses. Second, teachers provided their

responses on a questionnaire and a range of beliefs were reported. The questionnaire format did

not allow me to probe if teachers held certain beliefs more strongly than others. However, the

teachers’ responses do suggest that their beliefs influenced choices they made in their classroom

and they highlighted instances where external factors prevented them from enacting instruction

aligned with their beliefs.

www.manaraa.com

250

CHAPTER 7. DISCUSSION

The goal of this study was to provide insight into how transitioning CS teachers improve

their practice by exploring the relationship between PCK and instructional responsibilities. In

most studies of computer science PCK, the focus is either on pre-service teachers or experienced

CS teachers. Studies of teachers outside this dichotomy are rare. Similar to Liberman et al.

(2012), I focused on individuals who were neither novice CS educators nor expert CS educators,

but rather experienced educators who were learning to teach a new discipline. In the United

States, a focus on transitioning teachers is important because many CS educators come from the

ranks of in-service teachers trained in other disciplines. In the following paragraphs, I discuss

each research question explored in this project, how the study results relate to larger bodies of

literature on CS PCK and PCK in other disciplines, and implications for research and for

practice.

7.1 Summary of Findings

What knowledge of computer science content, student thinking, and instructional

strategies do teachers develop? Three findings emerged related to participants’ content

knowledge and PCK. First, teachers displayed more knowledge about student difficulties than

instructional strategies. Within the context of on-the-job teacher learning, this finding might be

expected. A classroom of twenty or so pupils might provide teachers with more opportunities to

interact with student ideas than with the instructional strategies observed in their volunteer

content experts (many of whom are not trained pedagogically as teachers) or gleaned from

instructional materials. However, this finding aligns with the results of Schneider and Plasman’s

learning progression of science educators that indicate “it is helpful for teachers to think about

www.manaraa.com

251

learners first, then to focus on teaching” (Schneider & Plasman, 2011, p. 27). So, the

transitioning CS teachers in this study may be following a similar progression in their PCK

development. This distinction may suggest that transitioning CS teachers may benefit from

concrete experiences around student learning before they begin to consider how best to support

that learning.

Second, teachers displayed some knowledge expressed by expert CS educators when

identifying student difficulties, instructional strategies, and difficult topics, but their knowledge

was not completely identical to the expert educator list. It may be expected that transitioning CS

teachers possess a subset of the PCK held by expert educators, but that does not explain why

participants offered ideas that were not mentioned on the expert educator list. This leads me to

ask, who should be the expert comparison group for transitioning CS teachers? Zendler and

colleagues (Zendler & Hubwieser, 2013; Zendler & Klaudt, 2012) found that high school

teachers attached different importance to content concepts of CS than university professors.

Similarly, Schulte and Bennedsen (2006) found high school teachers, college instructors, and

university professors provided different rankings for the difficulty, relevancy, and cognitive level

of CS topics. Baxter’s (1987) case study of two experienced secondary CS teachers, one formally

trained in CS and the other mostly self-taught, revealed differences in the structure of their

programming knowledge, the ways they communicated their knowledge to students, and the

ways they structured their units. The results of these studies suggest that CS PCK will depend on

the teaching context within which one works (i.e., secondary vs. tertiary) and the source of one’s

subject matter knowledge. Differences in teaching knowledge across grade levels may be

explained by the aims of CS learning at each level. Within the U.S., for example, many

www.manaraa.com

252

secondary courses cover foundational and introductory CS topics while many tertiary courses

provide greater depth and coverage of the CS discipline. What one considers essential knowledge

at the introductory level probably differs from what one considers essential knowledge at an

advanced level. Differences in teacher knowledge based on teachers’ training might stem from

epistemological differences about the nature and methods of CS represented in one’s training

course (e.g., technocratic versus scientific views of computing). So, it remains unclear if the

results gathered in this study simply confirm that transitioning CS teachers have less PCK than

experienced teachers or if the expert comparison sources were insufficient for judging the

knowledge of secondary teachers who are developing their craft mostly through on-the-job

experiences.

Lastly, while Ms. Robinson displayed both low content knowledge and low PCK, the

relationship between content knowledge and PCK for other participants varied. Mr. Miller and

Ms. Jones identified similar numbers of student difficulties and teaching strategies on the PCK

questionnaire but performed differently on their think-aloud tasks, with Ms. Jones showing a

more complete understanding of CS topics. Ms. King identified the most student difficulties and

teaching strategies on the PCK questionnaire, but performed less well on the content assessment

than Mr. Miller and Ms. Jones. Admittedly, Mr. Miller and Ms. Jones taught a different course

than Ms. King. However, one might expect a teacher who performed better on the PCK

questionnaire to also perform better on assessments of content knowledge, but the findings do

not support this hypothesis. One explanation for these observations is that content knowledge

and PCK might still be distinct knowledge areas for these transitioning teachers, each developing

at its own rate. Many models of teaching knowledge depict content knowledge as related to but

www.manaraa.com

253

separate from PCK (e.g., D. L. Ball et al., 2008). However, Baxter (1987) posited that this

distinction would be less clear in more expert teachers, because as teachers acquire more

experience, teaching become the lens through which they interpret content knowledge. Another

interesting finding is that the participants did not all offer the same student difficulties or

teaching strategies on the PCK questionnaire. As stated above, Baxter (1987) found that the PCK

of two experienced CS teachers looked different, so we might also expect the developing PCK of

transitioning teachers to look different across individuals. Differing development pathways has

methodological implications for the study of CS PCK. Namely, one instrument may not be

sufficient to capture a complete view of developing teacher knowledge. And, as suggested by

Baxter and Lederman in a review of methods to study PCK, simply assessing teacher knowledge

without considering how teachers transform that knowledge into practice “incurs a significant

risk of distorted meaning and interpretation” (Baxter & Lederman, 1999, p. 159).

A second explanation for these observations is that the instruments used to gather

evidence of PCK were methodologically flawed. The PCK questionnaire, content assessment,

and think-aloud interviews were based off instruments used in prior studies and materials used in

CS teaching practice. However, these instruments did not undergo empirical validation. Such a

process could refine the instruments so that they gather more consistent and confirming evidence

of CS PCK.

What instructional responsibilities do teachers undertake when planning and

implementing their lessons within the conditions of their co-teaching partnerships? Teachers

discussed or were observed implementing several responsibilities related to planning and

implementing instruction. The responsibilities focused on in this study overlap with several fields

www.manaraa.com

254

of pedagogical operation and aspects of teaching and learning identified in KUI’s literature-

based model of CS PCK that was validated with interviews of experienced CS educators

(Hubwieser, Magenheim, et al., 2013; Margaritis et al., 2015). Two responsibilities discussed by

study participants are not explicit in the KUI model: reviewing materials and practicing

materials. In addition to helping teachers plan their classes, these responsibilities provided

teachers with opportunities to practice the content covered in their lessons and to practice

methods used in the CS discipline (e.g., peer review of coding scripts). Indeed, these tasks may

be more pertinent to teachers new to course content than to experienced teachers, whose

responsibilities are reflected in the KUI model. When teachers have limited content knowledge,

they devote more of their planning time to learning content than to preparing instruction (Borko

& Livingston, 1989). Another responsibility that supported CS PCK development was assisting

students. Helping students work through assignments in class gave teachers a view into students’

problem-solving processes and not just their resultant coding scripts. Problem solving is a core

activity of CS and one’s process for approaching a problem is just as important as the outcome of

the solution. By assisting students in class, transitioning CS teachers had multiple opportunities

to observe this disciplinary activity and began to develop heuristics for judging the quality of

student work.

Self-reported data of the instructional responsibilities assumed during each classroom

observation revealed that teachers were involved in all aspects of teaching, but to varying

degrees depending on how they implemented their co-teaching relationship. Participants in

teacher-led teams had greater responsibility for developing lessons and creating assignments.

Participants in collaborative teams had less responsibility for assisting students and grading

www.manaraa.com

255

student work. These different approaches to co-teaching are not unlike models used in special

education, English language learning, and gifted education (e.g., Hughes & Murawski, 2001;

Pardini, 2006; Scruggs et al., 2007). The co-teaching approaches used by Ms. King, Mr.

Edwards, Mr. Perez, Mr. Miller, and Ms. Robinson fall into the category of one teach, one assist

where “one teacher leads instruction while the other circulates among the students offering

individual assistance” (Friend, Cook, Hurley-Chamberlain, & Shamberger, 2010, p. 12). The

approach used by Ms. Jones can be described as a hybrid mixture of team teaching where “both

teachers are responsible for planning, and they share the instruction of all students” (Perl,

Maughmer, & McQueen, 1999, p. 12) and one teach, one assist. Other models of co-teaching

such as parallel teaching, alternative teaching, and station teaching where not used by the case

study teachers. This is understandable because the TEALS program encouraged the one teach,

one assist model. Some scholars have encouraged the use of co-teaching to aid student teachers

during their practicums (e.g., Perl et al., 1999), and the results of this study provide support for

the utility of co-teaching with transitioning teachers as well. It seems extremely difficult for one

teacher to balance the demands of learning new content, understanding how to transform that

content into ways that support student learning, and attending to all their other course

responsibilities. Distributing instructional responsibilities across multiple instructors seems to

benefit teachers by allowing them to offload some of the tasks required in running a classroom

and concentrating on a smaller number of responsibilities.

A comparison of participants’ self-reported data of instructional responsibilities and

observation data gathered by the research team highlighted discrepancies in how teachers and

observers defined some teaching tasks. When reporting on the frequency of delivering lessons,

www.manaraa.com

256

participants included both activities that occurred during lectures and during lab time. However,

observers only focused on the former. The ways teachers engaged in leading their class during

lectures differed from lab time and should be more clearly distinguished in future instruments

used to measure instructional responsibilities.

How does teacher knowledge support the implementation of teaching responsibilities?

The study results provide some preliminary insights into the relationship between teacher

knowledge and teaching responsibilities. First, it seems that responsibilities which require

teachers to critically analyze artifacts of their practice (e.g., assessing the appropriateness of a

quiz found on the Internet) support teachers in making instructional decisions if they have the

appropriate content knowledge. It also seems that responsibilities which provide immediate,

external feedback (e.g., students highlighting an error presented in a lesson) can encourage

teachers to refine their teaching strategies. The cognitive mechanism behind this decision making

and refinement appears to be reflection, which many scholars have highlighted as important in

transforming teaching practice (e.g., Rodgers, 2002). By reflecting on their practice either during

teaching or while preparing for instruction, what Schön (1983) called reflection-in-action and

reflection-on-action, teachers revise their PCK to incorporate what they have learned while

implementing their responsibilities. Second, the data suggest that content knowledge mediates

how teaching responsibilities support PCK development, particularly when creating or reviewing

materials. For example, a teacher with high content knowledge might be better equipped to

create a quiz from scratch, while a teacher with low content knowledge might benefit from using

an existing quiz with an answer key to more easily identify salient features of the assessment. So,

when deciding if a responsibility will support a particular teacher’s PCK development, one

www.manaraa.com

257

should consider both the amount of reflection required as well as the level of content knowledge

needed. Third, some of the observed instructional responsibilities were unique to CS teaching

(e.g., code reviews, managing the computer lab as students worked through CS tasks). These

responsibilities have the potential to provide teachers with a better understanding of the

discipline of CS and its authentic practices. Teachers encountering these responsibilities for the

first time might require additional support from content experts to identify salient aspects of

those responsibilities. Lastly, some responsibilities did not appear to support CS PCK

development (e.g., managing the classroom, advocacy activities) but proved useful for

motivating teachers. This leads me to suggest that in selecting tasks to best support PCK

development, one cannot ignore the motivational and affective factors that encourage teacher

learning and persistence. Teachers may also need to engage in less reflective activities that

support the growth of other areas of their professional identities such as their identity as a CS

teacher.

How do confidence and epistemological beliefs influence instructional responsibilities?

While not a primary focus of this dissertation, it became clear from participants’ interview

comments that attending to confidence and epistemological beliefs might provide more insight

into teachers’ developing PCK and instructional responsibilities. The patterns I observed in this

study give more credence to prior research in these areas, namely that (a) teaching confidence

and beliefs influence instructional decisions and (b) confidence increases with greater content

knowledge (Kordaki, 2013; Morrison et al., 2012; Ni, 2009; Ni & Guzdial, 2012; Ross et al.,

1999). Participants in this study associated their confidence with both their comfort with subject

matter and their prior experiences teaching topics. The data suggest that as teachers gained more

www.manaraa.com

258

of a lead role in their classrooms and assumed more instructional responsibilities, their

confidence also increased. Results from participants who used either a volunteer-led or

collaborative co-teaching approach suggest that confidence stemming from prior teaching

experiences might appear before confidence stemming from understanding of subject matter

content. Ms. Jones showed how confidence can decrease when teaching a new curriculum for the

first time. She is the only participant who switched to a new curriculum during the study. Her

decline in confidence differed from Liberman et al.’s (2012) case study of an experienced CS

teacher who maintained her confidence when she began to teach a new programming paradigm.

It may be that prior confidence influences a teacher’s response to new curricula, with teachers

possessing lower levels of confidence more susceptible to a decrease in confidence when facing

new courses. It is important to explore the effect of curriculum changes on teacher confidence

within CS because most teachers who persist in their careers as CS educators will eventually

need to learn new programming languages or concepts as the field continues to evolve.

Responses to the epistemological beliefs questionnaire showed teachers held mostly student-

centered beliefs, which align with dominate ideas about K-12 CS education in the U.S., but that

external demands, such as the restrictive nature of the AP course, led teachers to take actions

counter to their beliefs. Lastly, participants’ beliefs and teaching looked different across

disciplines, suggesting that the nature and culture of a discipline can influence instructional

practices.

7.2 Implications for Research

This study was an initial attempt to understand the PCK of transitioning CS teachers. The

study results provide a portrait of CS teaching knowledge, insights into the enactment of

www.manaraa.com

259

teaching knowledge, and insights into the influence of beliefs and confidence on this knowledge.

Given the limited amount of prior research on this topic, I assumed an exploratory focus for this

case study which led to some methodological limitations as I borrowed, revised, and created new

instruments to elicit evidence of PCK at different phases of the project. In any research endeavor,

investigators must delimit their work to particular participants and settings. For this study, I

focused on a small group of math certified secondary teachers participating in the TEALS

program at schools located within the San Francisco Bay Area. Obviously, these bounds limit the

generalizability of this work and raise questions about PCK development of teachers working in

other contexts. Below I offer suggestions for future work to address these limitations and further

enhance our understanding of CS PCK development.

Documenting CS PCK Development. The PCK questionnaire proved useful in eliciting

examples of teacher knowledge related to the concept of lists and distinguishing teachers based

on their content knowledge and experience independently leading CS courses. A natural

extension of this work would be to ask teachers to complete the questionnaire for other big topics

in introductory secondary computing courses. Lists were selected because all participants had

experience teaching the topic. However, just as prior research has shown that topics vary in their

difficulty for students, they might also vary in their difficulty for transitioning teachers. It is

possible that Ms. King provided more student misconceptions because she understood lists better

than other teachers. If asked to complete the same exercise for a more difficult topic such as

recursion, would she provide a similar number of student difficulties? Also, my analysis focused

more on the quantity of responses given and less on the quality of those ideas. Future work

should investigate the effectiveness of the teaching methods provided and the prevalence of the

www.manaraa.com

260

student misconceptions identified. This may require new techniques to identify those methods

and misconceptions that do not only rely on teacher opinion, such as data mining or learning

analytics (e.g., Blikstein et al., 2014; Cherenkova et al., 2014). Another limitation is that the

PCK questionnaire was administered once at the end of the school year. Examining responses to

the questionnaire at different points in a teacher’s career can provide insight into how PCK

changes over time. This could be accomplished with longer longitudinal studies or with novice-

transitioning-expert teacher comparisons.

Looking Inside the CS Classroom. Lesson observations provided information on the types

of activities covered in classrooms and the distribution of teaching responsibilities between

teachers and volunteers. However, our inability to record lessons made it difficult to focus on

other events. It would be interesting to compare a teacher’s PCK with the enactment of that

knowledge in the classroom. For example, one could examine the teaching strategies used for

particular topics and how those strategies vary based on a teacher’s level of PCK for given

topics. Recordings of classroom video could also be useful in spawning new lines of research on

CS teacher learning. For example, video has been used to help mathematics teachers notice,

reflect on, and capture critical teaching moments (e.g., Seago, 2003; van Es & Sherin, 2008; van

Es, Stockero, Sherin, Zoest, & Dyer, 2015). Within CS, video studies could help researchers

understand what transitioning educators focus on in their classrooms and how focal events

provide, or prevent, opportunity of PCK development. Similar to the TIMSS Video Study

(Stigler & Hiebert, 1999), video studies in CS classrooms could contribute to a repository of

recordings to use in teacher education, evaluating the impact of professional development on CS

teaching practice for transitioning teachers, and informing educational policy.

www.manaraa.com

261

Distributing Instructional Responsibilities. The distribution of instructional

responsibilities between teachers and volunteers was influential in providing teachers with

learning opportunities. However, TEALS encouraged a one teach, one assist model so I was not

able to explore the utility of other co-teaching models. Do other models support PCK

development differently? Are other models more beneficial for different levels of content

knowledge? Also, TEALS recruits volunteers from the tech industry which, according to Eden

(2007), is dominated by a technocratic view of computing. Would the supports provided through

the co-teaching model differ if volunteers were recruited from research settings where rationalist

and scientific views of computing may be more common? Not all teachers have the luxury of

support from volunteer content experts nor is a model like TEALS easy to implement in more

isolated regions like rural America. Even within a program such as TEALS, volunteers can

sometimes withdraw from their duties. For teachers without access to content experts, can a co-

teaching model be simulated through other means and do these alternatives provide teachers with

the same learning opportunities? For example, Ms. King implemented a flipped classroom where

students watched lectures on a popular MOOC. Could a teacher working alone use a similar

approach in place of volunteer content experts, thereby allowing her more time to focus on

assisting students during lab time?

Crossing Disciplinary Boundaries. There seems to be a popular belief that mathematics

and computer science are closely related disciplines so it is easier for a mathematics teacher to

learn CS content than a teacher trained in another subject. But how do transitioning teachers

develop CS PCK if they come from other, supposedly less similar, subjects? In the future, I

would like to investigate the CS PCK development of in-service teachers trained in other

www.manaraa.com

262

disciplines, including non-STEM fields. Such a study would provide more insights into (a) the

relationship between content knowledge and PCK, (b) the ways teachers make use of their

existing teacher knowledge when transitioning to a new course, and (c) the unique challenges

each discipline brings to transitioning CS teachers. Another interesting area of research in this

avenue is to explore how transitioning to CS impacts instructional knowledge, beliefs, and

practice in teachers’ primary disciplines. For example, current CS courses promote a vision of

education aligned with reform teaching. Does this encourage teachers to bring reform practices

back to their other courses? For mathematics teachers, who are encouraged to implement reform

practices in their math teaching but do not, do their CS experiences provide new insights into

how they can practically bring reform practices to their math classrooms?

Supporting Students. Teachers are not the only ones crossing disciplinary boarders, their

students are as well. How do teachers support students in learning the epistemic beliefs and

inquiry practices of CS, which may differ from other subjects they have studied? Also, the goal

of teaching is to presumably improve student outcomes. So, while it is important to identify what

experiences might best support teacher development, we need to also consider which of those

experiences will also lead to desired student outcomes.

 Culturally Relevant PD. Lastly, the computing field suffers from a lack of diversity. I do

not know if this disparity extends to the secondary CS teaching force, nor did I attend to the role

of equity and culture in teacher knowledge development. Other scholars have investigated

equity-based and culturally relevant practices to support students in computing as well as

professional development programs to disseminate these practices (e.g., Eglash et al., 2006;

Margolis et al., 2014; Pinkard et al., 2017; Scott, Clark, Hayes, Mruczek, & Sheridan, 2010).

www.manaraa.com

263

However, I wonder if these ideas also extend to teacher learning. Results from the work of Hu,

Heiner, and McCarthy’s (2016) to introduce ECS across the state of Utah suggest that culture

does play a role in teacher learning and acceptance of professional development. So, future

research on teacher learning in CS should also consider issues of equity and culture.

7.3 Implications for Policy and Practice

Given the demand for more CS learning opportunities in American schools, educational

agencies are turning to in-service teachers to increase their CS teaching force. Out-of-field

teaching assignments are not new and may lead to unexpected instructional repercussions. For

example, experienced teachers working in new domains rely more on procedural rules,

implement less risky student-focused strategies, fail to anticipate student ideas, and have lower

teacher efficacy (Ross et al., 1999). This dissertation highlighted specific challenges faced by in-

service mathematics teachers transitioning to CS that can inform the decisions of administrators

and teacher educators when expanding their CS programs.

First, in addition to content and curricular knowledge, professional development

opportunities should include a focus on several additional areas to support experienced teachers

transitioning into CS classrooms. As argued by Armoni (2011), two of these areas are PCK and

the nature of CS. Teachers need to be aware of common student conceptions about CS ideas,

types of problem solving approaches students use with CS tasks, and effective instructional

methods specific to CS. Such knowledge is needed when teachers are making decisions around

lesson design, identifying issues in student work, and evaluating the utility of instructional

materials. Teachers also need exposure to the nature of CS, particularly to see that CS is not

limited to programming and to understand how their courses relate to the broader discipline.

www.manaraa.com

264

Without an accurate view of the discipline, teachers may transmit negative and limited

preconceptions of the field to students and be less equipped to evaluate the relevance of new

material, ideas, and behaviors they encounter in their classrooms. Teachers also need exposure to

authentic disciplinary experiences not only to learn CS content but to also develop a stock of

metaphors and real-world examples they can bring back into their classrooms. Related to these

knowledge areas, professional development for transitioning teachers also needs to highlight the

pluralism of problem solving in CS. Learners can and will use multiple problem-solving

approaches, all of which cannot be identified a priori. Teachers will need to develop comfort

with working through unexpected approaches in the moment. They will also need to consider

how to support a classroom of students who may all need individualized supports to address

unique problems within the timeframe of a class period. Professional development opportunities

should devote attention to disciplinary differences between CS and teachers’ primary subject

area. This can help teachers identify which instructional practices may be more or less effective

to carry into CS and the epistemic cognitions students might bring with them into CS classrooms.

These learning opportunities cannot be confined to one professional development experience. CS

teachers will need opportunities for continual learning throughout their careers to stay current

with advances in the discipline.

Second, transitioning teachers should be given extra time to balance the demands placed

upon them in taking on a CS teaching assignment. Although experienced teachers may not need

to worry about their general pedagogical skills, they do need to learn new content, curricula, and

instructional tasks (e.g., managing a computer lab). In addition, they must also continue teaching

their primary courses and fulfilling other professional obligations (e.g., school committees,

www.manaraa.com

265

extracurricular teams). Asking teachers to handle existing responsibility along with their new CS

responsibility can be overwhelming and sometimes make it impossible for teachers to fulfill all

their obligations. This can be an issue if, for example, teachers minimize tasks that would

support them in becoming more effective CS teachers. Reducing the number of courses teachers

are assigned as they first take on CS is one way to alleviate this burden. Assigning teachers

multiple sections of their CS courses can provide more opportunities for them to practice and

refine their CS teaching.

Third, stakeholders should also attend to the alignment between curricula selected for

their schools and their educational aims for CS, not only for students, but also for teachers. CS

courses vary in their demands. For example, AP courses, which are tied to high-stake exams,

may place demands on teachers to cover the curriculum in a certain way that is less productive

for their teacher knowledge development. For teachers who still need to experiment with their

CS instruction, this leaves little room for failure. Teachers very new to CS may fare better with

less high-stake courses. Also, study participants teaching the AP CS A course expressed conflict

between the goals of the AP curriculum and their desire to present CS as a fun, exploratory topic

to their students. This conflict sometimes led participants to teach counter to their

epistemological beliefs. Teachers who continually find themselves in the position of teaching CS

counter to their beliefs may lose interest and motivation in persisting in their new roles.

Fourth, supports should be made available to help teachers establish professional learning

communities, especially for isolated teachers who have no CS colleagues within their schools or

districts. Teachers can benefit from interacting with colleagues to identify projects for students,

discuss the advantages and disadvantages of programming environments, get feedback on newly

www.manaraa.com

266

created curricular materials, and learn about different instructional approaches. Also, interacting

with teachers coming from similar contexts (e.g., other mathematics teachers, other teachers

delivering the AP CS Principles course) can provide opportunities for teachers to discuss

challenges and find solutions common to their contexts. These communities can also provide the

sense of identity needed to help teachers persist through their transitions and continue with their

computer science teaching assignments. Supports for professional learning communities can take

the form of time given to teachers for such meetings, logistical support (e.g., a meeting space

within the district), or the creation of online networks to facilitate exchanges between teachers.

7.4 Conclusion

Much remains to be learned about the PCK development of experienced secondary

teachers who are transitioning into computing classrooms. While computer science education

research may be considered a young field relative to other areas, this study and the work of other

researchers are building an empirically validated knowledge base of computer science teacher

learning. It is my hope that these research efforts will continue and that the results of this work

will equip teachers with the knowledge and skills to become better computer science educators.

The importance of computing in our lives continues to grow and I believe that it will, like

mathematics and literacy, become a gateway to educational opportunities and economic

livelihood. Teachers, well prepared teachers, will play a vital role in helping youth pass through

the computing gateway.

www.manaraa.com

267

REFERENCES

Abell, S. K. (2008). Twenty Years Later: Does pedagogical content knowledge remain a useful

idea? International Journal of Science Education, 30(10), 1405–1416.

https://doi.org/10.1080/09500690802187041

Abelson, H., & DiSessa, A. A. (1986). Turtle Geometry: The Computer as a Medium for

Exploring Mathematics. MIT Press.

Abrahamson, D., & Wilensky, U. (2007). Learning Axes and Bridging Tools in a Technology-

Based Design for Statistics. International Journal of Computers for Mathematical

Learning, 12, 23–55.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-

6 Computational Thinking Curriculum Framework: Implications for Teacher Knowledge.

Journal of Educational Technology & Society, 19(3), 47–57.

Arkansas Code Annotated, 6-16–146 A.C.A § (2015).

Armoni, M. (2011). Looking at Secondary Teacher Preparation Through the Lens of Computer

Science. Trans. Comput. Educ., 11(4), 23:1–23:38.

https://doi.org/10.1145/2048931.2048934

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real”

Programming. Trans. Comput. Educ., 14(4), 25:1–25:15. https://doi.org/10.1145/2677087

Avalos, B. (2011). Teacher Professional Development in Teaching and Teacher Education over

ten years. Teaching and Teacher Education: An International Journal of Research and

Studies, 27(1), 10–20. https://doi.org/10.1016/j.tate.2010.08.007

www.manaraa.com

268

Ball, A. (2009). Toward a Theory of Generative Change in Culturally and Linguistically

Complex Classrooms. American Educational Research Journal, 46(1), 45–72.

https://doi.org/10.3102/0002831208323277

Ball, D. L. (1988). Knowledge and reasoning in mathematical pedagogy: Examining what

prospective teachers bring to teacher education. Michigan State University.

Ball, D. L., & Cohen, D. (1999). Developing Practice, Developing Practitioners: Toward a

practice-based theory of professional education. Teaching as the Learning Profession San

Francisco: Jossey-Bass.

Ball, D. L., & Forzani, F. M. (2009). The Work of Teaching and the Challenge for Teacher

Education. Journal of Teacher Education, 60(5), 497–511.

https://doi.org/10.1177/0022487109348479

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching What Makes

It Special? Journal of Teacher Education, 59(5), 389–407.

https://doi.org/10.1177/0022487108324554

Bamberger, J., & diSessa, A. (2003). Music as Embodied Mathematics: A Study of a Mutually

Informing Affinity. International Journal of Computers for Mathematical Learning, 8(2),

123–160. https://doi.org/10.1023/B:IJCO.0000003872.84260.96

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.

Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-295X.84.2.191

Barker, L. J., McDowell, C., & Kalahar, K. (2009). Exploring Factors That Influence Computer

Science Introductory Course Students to Persist in the Major. In Proceedings of the 40th

www.manaraa.com

269

ACM Technical Symposium on Computer Science Education (pp. 153–157). New York,

NY, USA: ACM. https://doi.org/10.1145/1508865.1508923

Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010). Using Scalable Game Design to

Teach Computer Science from Middle School to Graduate School. In Proceedings of the

Fifteenth Annual Conference on Innovation and Technology in Computer Science

Education (pp. 224–228). New York, NY, USA: ACM.

https://doi.org/10.1145/1822090.1822154

Baumfield, V. (2006). Tools for pedagogical inquiry: the impact of teaching thinking skills on

teachers. Oxford Review of Education, 32(2), 185–196.

https://doi.org/10.1080/03054980600645362

Baxter, J. A. (1987). Teacher Explanations in Computer Programming: A Study of Knowledge

Transformation (Doctoral Dissertation). Stanford University, CA, United States.

Baxter, J. A., & Lederman, N. G. (1999). Assessment and measurement of pedagogical content

knowledge. In Examining pedagogical content knowledge (pp. 147–161). Springer.

Bay Area Council Economic Institute. (2012). The Bay Area: A Regional Economic Assessment.

Retrieved from http://www.bayareaeconomy.org/media/files/pdf/BAEconAssessment.pdf

Ben-Ari, M. (1998). Constructivism in computer science education. In Proceedings of the

twenty-ninth SIGCSE technical symposium on Computer science education (pp. 257–

261). Atlanta, Georgia, United States: ACM.

https://doi.org/http://doi.acm.org/10.1145/273133.274308

www.manaraa.com

270

Bender, E., Hubwieser, P., Schaper, N., Margaritis, M., Berges, M., Ohrndorf, L., … Schubert, S.

(2015). Towards a Competency Model for Teaching Computer Science. Peabody Journal

of Education (0161956X), 90(4), 519–532.

Bentley, J. L. (1982). Writing Efficient Programs. Upper Saddle River, NJ, USA: Prentice-Hall,

Inc.

Berglund, A., Daniels, M., & Pears, A. (2006). Qualitative research projects in computing

education research: an overview. In Proceedings of the 8th Australasian Conference on

Computing Education-Volume 52 (pp. 25–33). Australian Computer Society, Inc.

Berliner, D. C. (2001). Learning about and learning from expert teachers. International Journal

of Educational Research, 35(5), 463–482. https://doi.org/10.1016/S0883-0355(02)00004-

6

Berliner, D. C. (2004). Describing the Behavior and Documenting the Accomplishments of

Expert Teachers. Bulletin of Science, Technology & Society, 24(3), 200–212.

https://doi.org/10.1177/0270467604265535

Bernier, D. (2012). In Need of Repair: The State of K-12 Computer Science Education in

California.

Biggers, M., Brauer, A., & Yilmaz, T. (2008). Student perceptions of computer science: a

retention study comparing graduating seniors with cs leavers. SIGCSE Bull., 40(1), 402–

406. https://doi.org/10.1145/1352322.1352274

Blikstein, P., & Wilensky, U. (2009). An Atom is Known by the Company it Keeps: A

Constructionist Learning Environment for Materials Science Using Agent-Based

www.manaraa.com

271

Modeling. International Journal of Computers for Mathematical Learning, 14(2), 81–

119. https://doi.org/10.1007/s10758-009-9148-8

Blikstein, P., & Wilensky, U. (2010). MaterialSim: A Constructionist Agent-Based Modeling

Approach to Engineering Education. In M. J. Jacobson & P. Reimann (Eds.), Designs for

Learning Environments of the Future (pp. 17–60). Springer US.

https://doi.org/10.1007/978-0-387-88279-6_2

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming

Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Computer

Programming. Journal of the Learning Sciences, 23(4), 561–599.

https://doi.org/10.1080/10508406.2014.954750

Blömeke, S., & Delaney, S. (2012). Assessment of teacher knowledge across countries: a review

of the state of research. ZDM Mathematics Education, 44(3), 223–247.

Blum, L., & Cortina, T. J. (2007). CS4HS: An Outreach Program for High School CS Teachers.

In Proceedings of the 38th SIGCSE Technical Symposium on Computer Science

Education (pp. 19–23). New York, NY, USA: ACM.

https://doi.org/10.1145/1227310.1227320

Borko, H., & Livingston, C. (1989). Cognition and Improvisation: Differences in Mathematics

Instruction by Expert and Novice Teachers. American Educational Research Journal,

26(4), 473–498. https://doi.org/10.3102/00028312026004473

Bort, H., & Brylow, D. (2013). CS4Impact: Measuring Computational Thinking Concepts

Present in CS4HS Participant Lesson Plans. In Proceeding of the 44th ACM Technical

www.manaraa.com

272

Symposium on Computer Science Education (pp. 427–432). New York, NY, USA: ACM.

https://doi.org/10.1145/2445196.2445323

Brandes, A., & Wilensky, U. (1991). Treasureworld: An Environment for the Study and

Exploration of Feedback. In Constructionism. Norwood N.J.: Ablex Publishing Corp.

Brockmeyer, M. A. (1998). The impact of an extended inquiry-based in-service programme on

the beliefs and practices of beginning secondary science teachers. The University of

Iowa, Iowa Cita, IA.

Buchholz, M., Saeli, M., & Schulte, C. (2013). PCK and Reflection in Computer Science

Teacher Education. In Proceedings of the 8th Workshop in Primary and Secondary

Computing Education (pp. 8–16). New York, NY, USA: ACM.

https://doi.org/10.1145/2532748.2532752

Buchman, A. L. (1956). Computer Programming and Coding at the High School Level. In

Proceedings of the 1956 11th ACM National Meeting (pp. 118–121). New York, NY,

USA: ACM. https://doi.org/10.1145/800258.808964

Bucholtz, M. (2000). The politics of transcription. Journal of Pragmatics, 32(10), 1439–1465.

https://doi.org/10.1016/S0378-2166(99)00094-6

Buechley, L., Eisenberg, M., & Elumeze, N. (2007). Towards a Curriculum for Electronic

Textiles in the High School Classroom. In Proceedings of the 12th Annual SIGCSE

Conference on Innovation and Technology in Computer Science Education (pp. 28–32).

New York, NY, USA: ACM. https://doi.org/10.1145/1268784.1268795

www.manaraa.com

273

Buehl, M. M., & Fives, H. (2016). The Role of Epistemic Cognition in Teacher Learning and

Praxis. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of Epistemic

Cognition (pp. 247–264). New York, NY: Routledge.

Campbell, J. L., Quincy, C., Osserman, J., & Pedersen, O. K. (2013). Coding In-depth

Semistructured Interviews Problems of Unitization and Intercoder Reliability and

Agreement. Sociological Methods & Research, 0049124113500475.

https://doi.org/10.1177/0049124113500475

Carbone, A., & Kaasbøll, J. J. (1998). A Survey of Methods Used to Evaluate Computer Science

Teaching. In Proceedings of the 6th Annual Conference on the Teaching of Computing

and the 3rd Annual Conference on Integrating Technology into Computer Science

Education: Changing the Delivery of Computer Science Education (pp. 41–45). New

York, NY, USA: ACM. https://doi.org/10.1145/282991.283014

Carbone, A., Mannila, L., & Fitzgerald, S. (2007). Computer science and IT teachers’

conceptions of successful and unsuccessful teaching: A phenomenographic study.

Computer Science Education, 17(4), 275–299.

https://doi.org/10.1080/08993400701706586

Carlsen, W. S. (1987). Why Do You Ask? The Effects of Science Teacher Subject-Matter

Knowledge on Teacher Questioning and Classroom Discourse.

Carpenter, T. P., Fennema, E., Peterson, P. L., & Carey, D. A. (1988). Teachers’ Pedagogical

Content Knowledge of Students’ Problem Solving in Elementary Arithmetic. Journal for

Research in Mathematics Education, 19(5), 385–401. https://doi.org/10.2307/749173

www.manaraa.com

274

Carter, L. (2006). Why Students with an Apparent Aptitude for Computer Science Don’T

Choose to Major in Computer Science. In Proceedings of the 37th SIGCSE Technical

Symposium on Computer Science Education (pp. 27–31). New York, NY, USA: ACM.

https://doi.org/10.1145/1121341.1121352

Century, J., Lach, M., King, H., Rand, S., Heppner, C., Franke, B., & Westrick, J. (2013).

Building an Operating System for Computer Science. Chicago, IL: CEMSE, University of

Chicago with UEI, University of Chicago. Retrieved from

http://cemse.uchicago.edu/computerscience/OS4CS/

Cherenkova, Y., Zingaro, D., & Petersen, A. (2014). Identifying Challenging CS1 Concepts in a

Large Problem Dataset. In Proceedings of the 45th ACM Technical Symposium on

Computer Science Education (pp. 695–700). New York, NY, USA: ACM.

https://doi.org/10.1145/2538862.2538966

Chicago Public Schools. (2014). CPS Announces First Schools to Implement District’s

Comprehensive K-12 Curriculum [Press Release]. Retrieved from

http://cps.edu/News/Press_releases/Pages/PR1_03_19_2014.aspx

Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the Dimensions of

Epistemic Cognition: Arguments From Philosophy and Psychology. Educational

Psychologist, 46(3), 141–167. https://doi.org/10.1080/00461520.2011.587722

Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A

theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218.

https://doi.org/10.1002/sce.10001

www.manaraa.com

275

Clancy, M. (2004). Misconceptions and Attitudes that Interfere with Learning to Program. In

Computer Science Education Research (pp. 85–100). Taylor and Francis.

Common Core of Data. (2016). U.S. Department of Education. Institute of Education Sciences,

National Center for Education Statistics. Retrieved from

https://nces.ed.gov/ccd/schoolsearch/

Computational Thinking in Science and Math. (2016). Retrieved April 24, 2017, from http://ct-

stem.northwestern.edu/

Cooper, S., Grover, S., & Simon, B. (2014). Building a Virtual Community of Practice for K-12

CS Teachers. Commun. ACM, 57(5), 39–41. https://doi.org/10.1145/2594456

Creswell, J. W. (2006). Qualitative Inquiry and Research Design: Choosing among Five

Approaches (2nd edition). Thousand Oaks: SAGE Publications, Inc.

Creswell, J. W. (2008). Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches, 3rd Edition (3rd edition). Thousand Oaks, Calif: SAGE Publications, Inc.

Creswell, J. W. (2012). Educational Research: Planning, Conducting, and Evaluating

Quantitative and Qualitative Research. Addison Wesley.

Creswell, J. W., & Miller, D. L. (2000). Determining Validity in Qualitative Inquiry. Theory Into

Practice, 39(3), 124–130. https://doi.org/10.1207/s15430421tip3903_2

CSTA. (2014). Results from the CSTA-Oracle Academy 2014 U.S. High School CS Survey: The

State of Computer Science in U.S. High Schools: an Administrator’s Perspective.

Retrieved from http://csta.acm.org/Research/sub/Projects/OracleSurvey2014.html

CSTA. (2015). CSTA National Secondary School Computer Science Survey 2015. Retrieved

from

www.manaraa.com

276

http://csta.acm.org/Research/sub/Projects/ResearchFiles/CSTA_NATIONAL_SECOND

ARY_SCHOOL_CS_SURVEY_2015.pdf

Cuny, J. (2012). Transforming High School Computing: A Call to Action. ACM Inroads, 3(2),

32–36. https://doi.org/10.1145/2189835.2189848

Cuny, J. (2015). Transforming K-12 Computing Education: An Update and a Call to Action.

ACM Inroads, 6(3), 54–57. https://doi.org/10.1145/2809795

Cutts, Q., Carbone, A., & van Haaster, K. (2004). Using an Electronic Voting System to Promote

Active Reflection on Coursework Feedback. In Proceedings of the International

Conference on Computers in Education. Melbourne, Australia.

Daehler, K. R., Heller, J. I., & Wong, N. (2015). Supporting Growth of Pedagogical Content

Knowledge in Science. In J. Loughran, P. Friedrichsen, & A. Berry (Eds.), Re-examining

Pedagogical Content Knowledge in Science Education (pp. 45–59). Routledge.

Dagdilelis, V., & Xinogalos, S. (2012). Preparing Teachers for Teaching Informatics:

Theoretical Considerations and Practical Implications. In Proceedings of the 7th

Workshop in Primary and Secondary Computing Education (pp. 78–81). New York, NY,

USA: ACM. https://doi.org/10.1145/2481449.2481468

Dale, N. B. (2006). Most Difficult Topics in CS1: Results of an Online Survey of Educators.

SIGCSE Bull., 38(2), 49–53. https://doi.org/10.1145/1138403.1138432

Darling-Hammond, L. (2000). Teacher Quality and Student Achievement. Education Policy

Analysis Archives, 8(0), 1. https://doi.org/10.14507/epaa.v8n1.2000

Davis, E. A. (2004). Knowledge integration in science teaching: Analysing teachers’ knowledge

development. Research in Science Education, 34(1), 21–53.

www.manaraa.com

277

Denning, P. J. (2003). Great Principles of Computing. Commun. ACM, 46(11), 15–20.

https://doi.org/10.1145/948383.948400

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., & Young, P. R.

(1989). Computing As a Discipline. Commun. ACM, 32(1), 9–23.

https://doi.org/10.1145/63238.63239

Depaepe, F., De Corte, E., & Verschaffel, L. (2016). Mathematical Epistemological Beliefs. In J.

A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of Epistemic Cognition (pp.

147–164). New York, NY: Routledge.

Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A

systematic review of the way in which the concept has pervaded mathematics educational

research. Teaching and Teacher Education, 34, 12–25.

https://doi.org/10.1016/j.tate.2013.03.001

Desimone, L. M. (2009). Improving Impact Studies of Teachers’ Professional Development:

Toward Better Conceptualizations and Measures. Educational Researcher, 38(3), 181–

199. https://doi.org/10.3102/0013189X08331140

Desimone, L. M., Porter, A. C., Garet, M. S., Yoon, K. S., & Birman, B. F. (2002). Effects of

Professional Development on Teachers’ Instruction: Results from a Three-year

Longitudinal Study. Educational Evaluation and Policy Analysis, 24(2), 81–112.

https://doi.org/10.3102/01623737024002081

diSessa, A. A., & Abelson, H. (1986). Boxer: A Reconstructible Computational Medium.

Commun. ACM, 29(9), 859–868. https://doi.org/10.1145/6592.6595

www.manaraa.com

278

Dogan, S., Pringle, R., & Mesa, J. (2016). The impacts of professional learning communities on

science teachers’ knowledge, practice and student learning: a review. Professional

Development in Education, 42(4), 569–588.

du Boulay, B. (1986). Some Difficulties of Learning to Program. In E. Soloway & J. C. Spohrer

(Eds.), Studying the Novice Programmer (pp. 283–299). Lawrence Elbaum Associates.

du Boulay, B., & O’Shea, T. (1976). How to work the LOGO machine: a primer for ELOGO.

University of Edinburgh, Department of Artificial Intelligence.

Dunst, C. J., Bruder, M. B., & Hamby, D. W. (2015). Metasynthesis of In-Service Professional

Development Research: Features Associated with Positive Educator and Student

Outcomes. Educational Research and Reviews, 10(12), 1731–1744.

Eagle, M., & Barnes, T. (2008). Wu’s Castle: Teaching Arrays and Loops in a Game. In

Proceedings of the 13th Annual Conference on Innovation and Technology in Computer

Science Education (pp. 245–249). New York, NY, USA: ACM.

https://doi.org/10.1145/1384271.1384337

Eden, A. H. (2007). Three Paradigms of Computer Science. Minds and Machines, 17(2), 135–

167. https://doi.org/10.1007/s11023-007-9060-8

Edwards, L. D. (1998). Embodying mathematics and science: Microworlds as representations.

The Journal of Mathematical Behavior, 17(1), 53–78. https://doi.org/10.1016/S0732-

3123(99)80061-3

Eglash, R., Bennett, A., O’donnell, C., Jennings, S., & Cintorino, M. (2006). Culturally situated

design tools: Ethnocomputing from field site to classroom. American Anthropologist,

108(2), 347–362.

www.manaraa.com

279

Eisenhardt, K. M. (1989). Building Theories from Case Study Research. Academy of

Management Review, 14(4), 532–550. https://doi.org/10.5465/AMR.1989.4308385

Eisenhardt, K. M., & Graebner, M. E. (2007). Theory Building From Cases: Opportunities And

Challenges. Academy of Management Journal, 50(1), 25–32.

https://doi.org/10.5465/AMJ.2007.24160888

Ericson, B., Armoni, M., Gal-Ezer, J., Seehorn, D., Stephenson, C., & Trees, F. (2008). Ensuring

exemplary teaching in an essential discipline: Addressing the crisis in computer science

teacher certification. New York: The Computer Science Teachers Association.

Ericson, B., Rogers, K., Parker, M., Morrison, B., & Guzdial, M. (2016). Identifying Design

Principles for CS Teacher Ebooks Through Design-Based Research. In Proceedings of

the 2016 ACM Conference on International Computing Education Research (pp. 191–

200). New York, NY, USA: ACM. https://doi.org/10.1145/2960310.2960335

Fang, Z. (1996). A review of research on teacher beliefs and practices. Educational Research,

38(1), 47–65. https://doi.org/10.1080/0013188960380104

Feiman-Nemser, S. (2003). What New Teachers Need To Learn. Educational Leadership, 60(8),

25–29.

Feldon, D. F. (2007). Cognitive Load and Classroom Teaching: The Double-Edged Sword of

Automaticity. Educational Psychologist, 42(3), 123–137.

https://doi.org/10.1080/00461520701416173

Fields, D. A., Searle, K. A., & Kafai, Y. B. (2016). Deconstruction Kits for Learning: Students’

Collaborative Debugging of Electronic Textile Designs. In Proceedings of the 6th Annual

www.manaraa.com

280

Conference on Creativity and Fabrication in Education (pp. 82–85). New York, NY,

USA: ACM. https://doi.org/10.1145/3003397.3003410

Fincher, S., & Petre, M. (Eds.). (2004a). Computer Science Education Research. Taylor &

Francis.

Fincher, S., & Petre, M. (2004b). Part One: the field and the endeavor. In Computer Science

Education Research (pp. 1–81). Taylor and Francis.

Fincher, S., Tenenberg, J., & Robins, A. (2011). Research Design: Necessary Bricolage. In

Proceedings of the seventh international workshop on Computing education research

(ICER ’11) (pp. 27–32). Providence, RI, USA: ACM.

https://doi.org/http://dx.doi.org/10.1145/2016911.2016919

Forsythe, G. (1963). Educational Implications of the Computer Revolution. In W. F. Freiberger

& W. Prager (Eds.), Applications of Digital Computers (pp. 166–178). Boston, MA.

Retrieved from https://exhibits.stanford.edu/feigenbaum/catalog/qx857vs2697

Forzani, F. M. (2014). Understanding “Core Practices” and “Practice-Based” Teacher Education:

Learning From the Past. Journal of Teacher Education, 65(4), 357–368.

https://doi.org/10.1177/0022487114533800

Franke, M. L., Carpenter, T., Fennema, E., Ansell, E., & Behrend, J. (1998). Understanding

teachers’ self-sustaining, generative change in the context of professional development1.

Teaching and Teacher Education, 14(1), 67–80. https://doi.org/10.1016/S0742-

051X(97)00061-9

www.manaraa.com

281

Franke, M. L., Carpenter, T. P., Levi, L., & Fennema, E. (2001). Capturing teachers’ generative

change: A follow-up study of professional development in mathematics. American

Educational Research Journal, 38, 653–689.

Freeman, J., Magerko, B., McKlin, T., Reilly, M., Permar, J., Summers, C., & Fruchter, E.

(2014). Engaging Underrepresented Groups in High School Introductory Computing

Through Computational Remixing with EarSketch. In Proceedings of the 45th ACM

Technical Symposium on Computer Science Education (pp. 85–90). New York, NY,

USA: ACM. https://doi.org/10.1145/2538862.2538906

Friend, M., Cook, L., Hurley-Chamberlain, D., & Shamberger, C. (2010). Co-teaching: An

illustration of the complexity of collaboration in special education. Journal of

Educational and Psychological Consultation, 20(1), 9–27.

Frieze, C. (2007). The critical role of culture and environment as determinants of women’s

participation in computer science. Carnegie Mellon University. Retrieved from

file://C:/northwestern/compSci_endnote.Data/PDF/frieze_thesis_CMU-CS-07-118-

0996839169/frieze_thesis_CMU-CS-07-118.pdf

Gal-Ezer, J., & Stephenson, C. (2010). Computer science teacher preparation is critical. ACM

Inroads, 1, 61–66.

Garcia, D. D., Franke, B., Hoeppner, S., & Paley, J. (2014). Teaching Tips We Wish They’D

Told Us Before We Started: High School Edition. In Proceedings of the 45th ACM

Technical Symposium on Computer Science Education (pp. 463–464). New York, NY,

USA: ACM. https://doi.org/10.1145/2538862.2538870

www.manaraa.com

282

Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What Makes

Professional Development Effective? Results From a National Sample of Teachers.

American Educational Research Journal, 38(4), 915–945.

https://doi.org/10.3102/00028312038004915

Gay, G. (2002). Preparing for Culturally Responsive Teaching. Journal of Teacher Education,

53(2), 106–16.

Giannakos, M. N., Doukakis, S., Crompton, H., Chrisochoides, N., Adamopoulos, N., &

Giannopoulou, P. (2014). Examining and mapping CS teachers’ technological,

pedagogical and content knowledge (TPACK) in K-12 schools. In 2014 IEEE Frontiers

in Education Conference (FIE) Proceedings (pp. 1–7).

https://doi.org/10.1109/FIE.2014.7044406

Ginat, D. (2008). Learning from wrong and creative algorithm design. In Proceedings of the 39th

SIGCSE technical symposium on Computer science education (pp. 26–30). Portland, OR,

USA: ACM. https://doi.org/http://doi.acm.org/10.1145/1352135.1352148

Goldman, S. R., Britt, M. A., Brown, W., Cribb, G., George, M., Greenleaf, C., … READI, P.

(2016). Disciplinary Literacies and Learning to Read for Understanding: A Conceptual

Framework for Disciplinary Literacy. Educational Psychologist, 51(2), 219–246.

https://doi.org/10.1080/00461520.2016.1168741

Goldsmith, L., Doerr, H., & Lewis, C. (2014). Mathematics teachers’ learning: a conceptual

framework and synthesis of research. Journal of Mathematics Teacher Education, 17(1),

5–36.

www.manaraa.com

283

Goode, J., & Margolis, J. (2011). Exploring Computer Science: A Case Study of School Reform.

Trans. Comput. Educ., 11(2), 12:1–12:16. https://doi.org/10.1145/1993069.1993076

Goode, J., Margolis, J., & Chapman, G. (2014). Curriculum is Not Enough: The Educational

Theory and Research Foundation of the Exploring Computer Science Professional

Development Model. In Proceedings of the 45th ACM Technical Symposium on

Computer Science Education (pp. 493–498). New York, NY, USA: ACM.

https://doi.org/10.1145/2538862.2538948

Google CS4HS. (n.d.). Retrieved March 5, 2017, from https://www.cs4hs.com/

Google, & Gallup. (2015). Searching for Computer Science: Access and Barriers in U.S. K-12

Education.

Google Inc., & Gallup Inc. (2016a). Diversity Gaps in Computer Science: Exploring the

Underrepresentation of Girls, Blacks and Hispanics. Retrieved from

http://goo.gl/PG34aH

Google Inc., & Gallup Inc. (2016b). Trends in the State of Computer Science in U.S. K-12

Schools. Retrieved from http://goo.gl/j291E0

Goss, M., Powers, R., & Hauk, S. (2013). Identifying Change in Secondary Mathematics

Teachers’ Pedagogical Content Knowledge. In Proceedings for the 16th conference on

Research in Undergraduate Mathematics Education, Denver, CO.

Götschi, T., Sanders, I., & Galpin, V. (2003). Mental Models of Recursion. In Proceedings of the

34th SIGCSE Technical Symposium on Computer Science Education (pp. 346–350). New

York, NY, USA: ACM. https://doi.org/10.1145/611892.612004

www.manaraa.com

284

Gray, J., Haynie, K., Packman, S., Boehm, M., Crawford, C., & Muralidhar, D. (2015). A Mid-

Project Report on a Statewide Professional Development Model for CS Principles. In

Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp.

380–385). New York, NY, USA: ACM. https://doi.org/10.1145/2676723.2677306

Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., & Stoker, I. (2014). Computational

Thinking Skills in Dutch Secondary Education: Exploring Pedagogical Content

Knowledge. In Proceedings of the 14th Koli Calling International Conference on

Computing Education Research (pp. 173–174). New York, NY, USA: ACM.

https://doi.org/10.1145/2674683.2674704

Griffin, J., Pirmann, T., & Gray, B. (2016). Two Teachers, Two Perspectives on CS Principles.

In Proceedings of the 47th ACM Technical Symposium on Computing Science Education

(pp. 461–466). New York, NY, USA: ACM. https://doi.org/10.1145/2839509.2844630

Grobe, T., Curnan, S., & Melchior, A. (1990). Synthesis of Existing Knowledge and Practice in

the Field of Educational Partnerships.

Grossman, P. L., Hammerness, K., & McDonald, M. (2009). Redefining teaching, re‐imagining

teacher education. Teachers and Teaching, 15(2), 273–289.

https://doi.org/10.1080/13540600902875340

Grossman, P. L., & McDonald, M. (2008). Back to the Future: Directions for Research in

Teaching and Teacher Education. American Educational Research Journal, 45(1), 184–

205. https://doi.org/10.3102/0002831207312906

www.manaraa.com

285

Grossman, P. L., & Stodolsky, S. S. (1995). Content as Context: The Role of School Subjects in

Secondary School Teaching. Educational Researcher, 24(8), 5–23.

https://doi.org/10.3102/0013189X024008005

Guzdial, M. (2003). A media computation course for non-majors (Vol. 35, pp. 104–108). ACM.

Guzdial, M. (2004). Programming Environments for Novices. In Computer Science Education

Research (pp. 127–154). Taylor and Francis. Retrieved from

file://C:/northwestern/compSci_endnote.Data/PDF/guzdial_programming environments

for novices-2702252544/guzdial_programming environments for novices.pdf

Guzdial, M. (2010). Does contextualized computing education help? ACM Inroads, 1, 4–6.

https://doi.org/10.1145/1869746.1869747

Guzdial, M. (2011). Learning How to Prepare Computer Science High School Teachers.

Computer, 44(10), 95–97. https://doi.org/10.1109/MC.2011.316

Guzdial, M., Ericson, B., Mcklin, T., & Engelman, S. (2014). Georgia Computes! An

Intervention in a US State, with Formal and Informal Education in a Policy Context.

Trans. Comput. Educ., 14(2), 13:1–13:29. https://doi.org/10.1145/2602488

Handal, B. (2003). Teachers’ Mathematical Beliefs: A Review. The Mathematics Educator,

13(2). Retrieved from http://tme.journals.libs.uga.edu/index.php/tme/article/view/131

Hanks, B., & Brandt, M. (2009). Successful and unsuccessful problem solving approaches of

novice programmers. In Proceedings of the 40th ACM technical symposium on Computer

science education (pp. 24–28). Chattanooga, TN, USA: ACM.

https://doi.org/http://doi.acm.org/10.1145/1508865.1508876

www.manaraa.com

286

Hanks, B., McDowell, C., Draper, D., & Krnjajic, M. (2004). Program quality with pair

programming in CS1. In Proceedings of the 9th annual SIGCSE conference on

Innovation and technology in computer science education (pp. 176–180). New York, NY,

USA: ACM. https://doi.org/10.1145/1007996.1008043

Harlen, W., & Holroyd, C. (1997). Primary teachers’ understanding of concepts of science:

impact on confidence and teaching. International Journal of Science Education, 19(1),

93–105. https://doi.org/10.1080/0950069970190107

Hashweh, M. (1996). Effects of science teachers’ epistemological beliefs in teaching. Journal of

Research in Science Teaching, 33(1), 47–63. https://doi.org/10.1002/(SICI)1098-

2736(199601)33:1<47::AID-TEA3>3.0.CO;2-P

Hashweh, M. (2005). Teacher pedagogical constructions: a reconfiguration of pedagogical

content knowledge. Teachers and Teaching, 11(3), 273–292.

Hashweh, M. (2013). PEDAGOGICAL CONTENT KNOWLEDGE: TWENTY-FIVE YEARS

LATER. Advances in Research on Teaching, 19, 115–140.

Hazzan, O., Lapidot, T., & Ragonis, N. (2011). Guide to Teaching Computer Science: An

Activity-Based Approach. Springer.

Hazzan, O., Lapidot, T., & Ragonis, N. (2015). Guide to Teaching Computer Science: An

Activity-Based Approach (2nd ed. 2014 edition). London: Springer.

Heller, J. I., Daehler, K. R., Wong, N., Shinohara, M., & Miratrix, L. W. (2012). Differential

effects of three professional development models on teacher knowledge and student

achievement in elementary science. Journal of Research in Science Teaching, 49(3),

333–362. https://doi.org/10.1002/tea.21004

www.manaraa.com

287

Hilton, M., & Janzen, D. S. (2012). On Teaching Arrays with Test-driven Learning in WebIDE.

In Proceedings of the 17th ACM Annual Conference on Innovation and Technology in

Computer Science Education (pp. 93–98). New York, NY, USA: ACM.

https://doi.org/10.1145/2325296.2325322

Holbert, N. R., & Wilensky, U. (2011). Racing Games for Exploring Kinematics: A

Computational Thinking Approach. In Proceedings of the 7th International Conference

on Games + Learning + Society Conference (pp. 109–118). Pittsburgh, PA, USA: ETC

Press. Retrieved from http://dl.acm.org/citation.cfm?id=2206376.2206390

Holmboe, C., McIver, L., & George, C. (2001). Research agenda for computer science

education. In 13th Workshop of the Psychology of Programming Interest Group (Vol.

207223).

Hooper, P. K. (1996). They Have Their Own Thoughts. In Y. B. Kafai & M. Resnick (Eds.),

Constructionism in Practice: Designing, Thinking, and Learning in a Digital World (pp.

241–254).

Hu, H. H., Heiner, C., & McCarthy, J. (2016). Deploying Exploring Computer Science

Statewide. In Proceedings of the 47th ACM Technical Symposium on Computing Science

Education (pp. 72–77). New York, NY, USA: ACM.

https://doi.org/10.1145/2839509.2844622

Hubwieser, P., Berges, M., Magenheim, J., Schaper, N., Bröker, K., Margaritis, M., … Ohrndorf,

L. (2013). Pedagogical Content Knowledge for Computer Science in German Teacher

Education Curricula. In Proceedings of the 8th Workshop in Primary and Secondary

www.manaraa.com

288

Computing Education (pp. 95–103). New York, NY, USA: ACM.

https://doi.org/10.1145/2532748.2532753

Hubwieser, P., Magenheim, J., Mühling, A., & Ruf, A. (2013). Towards a conceptualization of

pedagogical content knowledge for computer science. In Proceedings of the ninth annual

international ACM conference on International computing education research (pp. 1–8).

ACM.

Hughes, C. E., & Murawski, W. A. (2001). Lessons from another field: Applying coteaching

strategies to gifted education. Gifted Child Quarterly, 45(3), 195–204.

Jenkins, J. T., Jerkins, J. A., & Stenger, C. L. (2012). A Plan for Immediate Immersion of

Computational Thinking into the High School Math Classroom Through a Partnership

with the Alabama Math, Science, and Technology Initiative. In Proceedings of the 50th

Annual Southeast Regional Conference (pp. 148–152). New York, NY, USA: ACM.

https://doi.org/10.1145/2184512.2184547

Johns Hopkins University Center for Social Organization of Schools. (1983). School Uses of

Microcomputers. Reports from a National Survey. Issue No. 1.

Joint Task Force on Computing Curricula, A. for C. M. (ACM), & Society, I. C. (2013).

Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree

Programs in Computer Science. New York, NY, USA: ACM.

Joy, M., Sinclair, J., Sun, S., Sitthiworachart, J., & López-González, J. (2008). Categorising

computer science education research. Education and Information Technologies, 14(2),

105–126. https://doi.org/10.1007/s10639-008-9078-4

www.manaraa.com

289

K–12 Computer Science Framework. (2016). Retrieved November 27, 2016, from

http://k12cs.org

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying student

misconceptions of programming. In Proceedings of the 41st ACM technical symposium

on Computer science education (pp. 107–111). Milwaukee, Wisconsin, USA: ACM.

https://doi.org/http://doi.acm.org/10.1145/1734263.1734299

Kafai, Y. B. (2006). Constructionism. In R. K. Sawyer (Ed.), The Cambridge Handbook of the

Learning Sciences (1 edition, pp. 35–46). Cambridge ; New York: Cambridge University

Press.

Kagan, D. M. (1990). Ways of Evaluating Teacher Cognition: Inferences Concerning the

Goldilocks Principle. Review of Educational Research, 60(3), 419–469.

https://doi.org/10.3102/00346543060003419

Katz, S., Allbritton, D., Aronis, J., Wilson, C., & Soffa, M. (2006). Gender, achievement, and

persistence in an undergraduate computer science program. ACM SIGMIS Database, 37,

57.

Kay, A. C. (1972). A Personal Computer for Children of All Ages. In Proceedings of the ACM

Annual Conference - Volume 1. New York, NY, USA: ACM.

https://doi.org/10.1145/800193.1971922

Kay, A. C., & Goldberg, A. (1977). Personal dynamic media. IEEE Computer, 31–41.

Kazemi, E., Lampert, M., & Ghousseini, H. (2007). Conceptualizing and Using Routines of

Practice in Mathematics Teaching to Advance Professional Education | Spencer.

Chicago, IL: Spencer Foundation. Retrieved from

www.manaraa.com

290

http://www.spencer.org/conceptualizing-and-using-routines-practice-mathematics-

teaching-advance-professional-education

Kelleher, C., & Pausch, R. (2005). Lowering the Barriers to Programming: a taxonomy of

programming environments and languages for novice programmers. ACM Computing

Surveys, 37, 83–1137.

Kick, R., & Trees, F. P. (2015). AP CS Principles: Engaging, Challenging, and Rewarding. ACM

Inroads, 6(1), 42–45. https://doi.org/10.1145/2710672

Kinnunen, P., & Malmi, L. (2006). Why students drop out CS1 course? In Proceedings of the

second international workshop on Computing education research (pp. 97–108). New

York, NY, USA: ACM. https://doi.org/10.1145/1151588.1151604

Kordaki, M. (2013). High school computing teachers’ beliefs and practices: A case study.

Computers & Education, 68, 141–152. https://doi.org/10.1016/j.compedu.2013.04.020

Korotkin, A. L., Darby, Jr., C., & Romashko, T. (1970). A Survey of Computing Activities in

Secondary Schools. Final Report. (No. AIR-852-10/70-FR).

Krippendorff, K. (2008). Systematic and Random Disagreement and the Reliability of Nominal

Data. Communication Methods and Measures, 2(4), 323–338.

https://doi.org/10.1080/19312450802467134

Krippendorff, K. (2011). Computing Krippendorff’s Alpha-Reliability. Departmental Papers

(ASC). Retrieved from http://repository.upenn.edu/asc_papers/43

Krippendorff, K. (2012). Content Analysis: An Introduction to Its Methodology. SAGE.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A Study of the Difficulties of Novice

Programmers. In Proceedings of the 10th Annual SIGCSE Conference on Innovation and

www.manaraa.com

291

Technology in Computer Science Education (pp. 14–18). New York, NY, USA: ACM.

https://doi.org/10.1145/1067445.1067453

Lampert, M. (2010). Learning Teaching in, from, and for Practice: What Do We Mean? Journal

of Teacher Education, 61, 21–34. https://doi.org/10.1177/0022487109347321

Lang, K., Galanos, R., Goode, J., Seehorn, D., & Trees, F. (2013). Bugs in the System: Computer

Science Teacher Certification in the U.S. Computer Science Teachers Association.

Retrieved from

http://csta.acm.org/ComputerScienceTeacherCertification/sub/CSTA_BugsInTheSystem.

pdf

Lapidot, T. (2005). Computer Science Teachers’ Learning during their Everyday Work (Doctoral

Dissertation). Technion University, Israel.

Leake, M., & Lewis, C. (2016). Designing a New System for Sharing Computer Science

Teaching Resources. In Proceedings of the 19th ACM Conference on Computer

Supported Cooperative Work and Social Computing Companion (pp. 321–324). New

York, NY, USA: ACM. https://doi.org/10.1145/2818052.2869109

Lee, C. D., Goldman, S. R., Levine, S., & Magliano, J. (2016). Epistemic cognition in literary

reasoning. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of Epistemic

Cognition (pp. 165–183). New York, NY: Routledge.

Lee, C. D., Spencer, M. B., & Harpalani, V. (2003). “Every Shut Eye Ain’t Sleep”: Studying

How People Live Culturally. Educational Researcher, 32, 6–13.

Lewis, C., Jackson, M., & Waite, W. (2010). Student and faculty attitudes and beliefs about

computer science. Communications of the ACM, 53, 78–85.

www.manaraa.com

292

Liberman, N., Kolikant, Y. B.-D., & Beeri, C. (2012). “Regressed Experts” as a New State in

Teachers’ Professional Development: Lessons from Computer Science Teachers’

Adjustments to Substantial Changes in the Curriculum. Computer Science Education,

22(3), 257–283.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. SAGE.

Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in

science: Developing ways of articulating and documenting professional practice. Journal

of Research in Science Teaching, 41(4), 370–391. https://doi.org/10.1002/tea.20007

Loyd, B. H., & Gressard, C. (1984). Reliability and Factorial Validity of Computer Attitude

Scales. Educational and Psychological Measurement, 44(2), 501–505.

https://doi.org/10.1177/0013164484442033

Luft, J. A., & Roehrig, G. H. (2007). Capturing Science Teachers’ Epistemological Beliefs: The

Development of the Teacher Beliefs Interview. Electronic Journal of Science Education,

11(2). Retrieved from http://ejse.southwestern.edu/article/view/7794

Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, Sources, and Development of

Pedagogical Content Knowledge for Science Teaching. In J. Gess-Newsome & N. G.

Lederman (Eds.), Examining Pedagogical Content Knowledge (pp. 95–132). Springer

Netherlands. Retrieved from http://link.springer.com/chapter/10.1007/0-306-47217-1_4

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch

Programming Language and Environment. Trans. Comput. Educ., 10, 1–15.

https://doi.org/10.1145/1868358.1868363

www.manaraa.com

293

Margaritis, M., Magenheim, J., Hubwieser, P., Berges, M., Ohrndorf, L., & Schubert, S. (2015).

Development of a competency model for computer science teachers at secondary school

level. In 2015 IEEE Global Engineering Education Conference (EDUCON) (pp. 211–

220). https://doi.org/10.1109/EDUCON.2015.7095973

Margolis, J., & Fisher, A. (2003). Unlocking the Clubhouse: Women in Computing. MIT Press.

Margolis, J., Goode, J., Chapman, G., & Ryoo, J. J. (2014). That Classroom “Magic.” Commun.

ACM, 57(7), 31–33. https://doi.org/10.1145/2618107

Martinez, M. C., Gomez, M. J., Moresi, M., & Benotti, L. (2016). Lessons Learned on Computer

Science Teachers Professional Development. In Proceedings of the 2016 ACM

Conference on Innovation and Technology in Computer Science Education (pp. 77–82).

New York, NY, USA: ACM. https://doi.org/10.1145/2899415.2899460

Matthews, M. E. (2013). The Influence of the Pedagogical Content Knowledge Framework on

Research in Mathematics Education: A Review across Grade Bands. Journal of

Education, 193(3), 29–37.

McDonald, M., Kazemi, E., & Kavanagh, S. S. (2013). Core Practices and Pedagogies of

Teacher Education: A Call for a Common Language and Collective Activity. Journal of

Teacher Education, 64(5), 378–386. https://doi.org/10.1177/0022487113493807

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2003). The impact of pair

programming on student performance, perception and persistence.

Menekse, M. (2015). Computer science teacher professional development in the United States: a

review of studies published between 2004 and 2014. Computer Science Education, 25(4),

325–350.

www.manaraa.com

294

Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis: An Expanded Sourcebook.

Sage.

Miller, L. A. (1974). Programming by non-programmers. International Journal of Man-Machine

Studies, 6, 237–260.

Milne, I., & Rowe, G. (2002). Difficulties in Learning and Teaching Programming—Views of

Students and Tutors. Education and Information Technologies, 7(1), 55–66.

https://doi.org/10.1023/A:1015362608943

Mizzi, D. (2013). The Challenges Faced by Science Teachers When Teaching Outside Their

Specific Science Specialism. Acta Didactica Napocensia, 6(4), 1–6.

Morgan, D. L. (2007). Paradigms Lost and Pragmatism Regained: Methodological Implications

of Combining Qualitative and Quantitative Methods. Journal of Mixed Methods

Research, 1(1), 48–76. https://doi.org/10.1177/2345678906292462

Morrison, B. B., Ni, L., & Guzdial, M. (2012). Adapting the disciplinary commons model for

high school teachers: improving recruitment, creating community. In Proceedings of the

ninth annual international conference on International computing education research

(pp. 47–54). New York, NY, USA: ACM. https://doi.org/10.1145/2361276.2361287

National Research Council. (2011). Report of a Workshop of Pedagogical Aspects of

Computational Thinking. Washington, D.C.: The National Academies Press. Retrieved

from http://www.nap.edu/catalog.php?record_id=13170

Nelson, T. H. (2005). Knowledge Interactions in Teacher-Scientist Partnerships: Negotiation,

Consultation, and Rejection. Journal of Teacher Education, 56(4), 382–395.

https://doi.org/10.1177/0022487105279938

www.manaraa.com

295

Ni, L. (2009). What Makes CS Teachers Change?: Factors Influencing CS Teachers’ Adoption

of Curriculum Innovations. In Proceedings of the 40th ACM Technical Symposium on

Computer Science Education (pp. 544–548). New York, NY, USA: ACM.

https://doi.org/10.1145/1508865.1509051

Ni, L., & Guzdial, M. (2012). Who AM I?: Understanding High School Computer Science

Teachers’ Professional Identity. In Proceedings of the 43rd ACM Technical Symposium

on Computer Science Education (pp. 499–504). New York, NY, USA: ACM.

https://doi.org/10.1145/2157136.2157283

Niess, M., Suharwoto, G., Lee, K., & Sadri, P. (2006). Guiding inservice mathematics teachers in

developing technology pedagogical content knowledge (TPCK). In Society for

Information Technology and Teacher Education Annual Conference (pp. 20–24).

Ohrndorf, L., & Schubert, S. (2013). Measurement of Pedagogical Content Knowledge:

Students’ Knowledge and Conceptions. In Proceedings of the 8th Workshop in Primary

and Secondary Computing Education (pp. 104–107). New York, NY, USA: ACM.

https://doi.org/10.1145/2532748.2532758

Ohrndorf, L., & Schubert, S. (2014). Students’ Cognition: Outcomes from an Initial Study with

Student Teachers. In Proceedings of the 9th Workshop in Primary and Secondary

Computing Education (pp. 112–115). New York, NY, USA: ACM.

https://doi.org/10.1145/2670757.2670758

Oliver, D. G., Serovich, J. M., & Mason, T. L. (2005). Constraints and Opportunities with

Interview Transcription: Towards Reflection in Qualitative Research. Social Forces,

84(2), 1273–1289. https://doi.org/10.1353/sof.2006.0023

www.manaraa.com

296

Opfer, V. D., & Pedder, D. (2011). Conceptualizing Teacher Professional Learning. Review of

Educational Research, 81(3), 376–407.

Orton, K., Weintrop, D., Beheshti, E., Horn, M. S., Jona, K., & Wilensky, U. (2016). Bringing

Computational Thinking into High School Mathematics and Science Classrooms. In

Proocedings of the International Conference of the Learning Sciences (ICLS) 2016.

Singapore.

Papert, S. (1972). Teaching Children Thinking. Innovations in Education & Training

International, 9(5), 245–255. https://doi.org/10.1080/1355800720090503

Papert, S., & Harel, I. (1991). Situating Constructionism. In Constructionism. Ablex Publishing

Corporation. Retrieved from

http://www.papert.org/articles/SituatingConstructionism.html

Pardini, P. (2006). In One Voice: Mainstream and ELL Teachers Work Side-by-Side in the

Classroom, Teaching Language through Content. Journal of Staff Development, 27(4),

20–25.

Pargas, R. P., & Shah, D. M. (2006). Things are clicking in computer science courses. SIGCSE

Bull., 38(1), 474–478. https://doi.org/10.1145/1124706.1121489

Park, K., Hurt, A., Fisher, T., & Rost, L. C. (2016, April 20). Map: How Per-Pupil Spending

Compares Across U.S. School Districts - Education Week. Education Week. Retrieved

from http://www.edweek.org/ew/section/multimedia/map-how-per-pupil-spending-

compares-across-us.html

www.manaraa.com

297

Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content

knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals.

Research in Science Education, 38(3), 261–284.

Pea, R. (1986). Language-independent conceptual “bugs” in novice programming. Journal

Educational Computing Research, 2, 25–36.

Perl, M., Maughmer, B., & McQueen, C. (1999). Co-teaching: A different approach for

cooperating teachers and student teachers. In Association of Teacher Educators Annual

Conference, Chicago, IL.

Petersen, A., Craig, M., Campbell, J., & Tafliovich, A. (2016). Revisiting Why Students Drop

CS1. In Proceedings of the 16th Koli Calling International Conference on Computing

Education Research (pp. 71–80). New York, NY, USA: ACM.

https://doi.org/10.1145/2999541.2999552

Peterson, P. L., Fennema, E., Carpenter, T. P., & Loef, M. (1989). Teacher’s Pedagogical

Content Beliefs in Mathematics. Cognition and Instruction, 6(1), 1–40.

https://doi.org/10.1207/s1532690xci0601_1

Petre, M., & Price, B. (2004). Using Robotics to Motivate “Back Door” Learning. Education and

Information Technologies, 9(2), 147–158.

https://doi.org/10.1023/B:EAIT.0000027927.78380.60

Pinkard, N., Erete, S., Martin, C. K., & Royston, M. M. de. (2017). Digital Youth Divas:

Exploring Narrative-Driven Curriculum to Spark Middle School Girls’ Interest in

Computational Activities. Journal of the Learning Sciences, 26.

https://doi.org/10.1080/10508406.2017.1307199

www.manaraa.com

298

Poirot, J. L. (1979). Computer Education in the Secondary School: Problems and Solutions. In

Proceedings of the Tenth SIGCSE Technical Symposium on Computer Science Education

(pp. 101–104). New York, NY, USA: ACM. https://doi.org/10.1145/800126.809562

Poplin, M. S., Drew, D. E., & Gable, R. S. (1984). CALIP, Computer Aptitude, Literacy, and

Interest Profile. Pro-Ed.

Postholm, M. B. (2012). Teachers’ Professional Development: A Theoretical Review.

Educational Research, 54(4), 405–429.

Powell-Moman, A. D., & Brown-Schild, V. B. (2011). The Influence of a Two-Year

Professional Development Institute on Teacher Self-Efficacy and Use of Inquiry-Based

Instruction. Science Educator, 20(2), 47–53.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the Looking Glass: Teaching CS0

with Alice. In Proceedings of the 38th SIGCSE Technical Symposium on Computer

Science Education (pp. 213–217). New York, NY, USA: ACM.

https://doi.org/10.1145/1227310.1227386

Professional Development. (n.d.). Retrieved December 15, 2015, from

https://code.org/educate/professional-development

Ragonis, N. (2009). Computing Pre-University: Secondary Level Computing Curricula. In Wiley

Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Inc.

https://doi.org/10.1002/9780470050118.ecse974

Ragonis, N., & Hazzan, O. (2009). Integrating a Tutoring Model into the Training of Prospective

Computer Science Teachers. Journal of Computers in Mathematics and Science

Teaching, 28(3), 309–339.

www.manaraa.com

299

Ragonis, N., & Shilo, G. (2013). What is It We Are Asking: Interpreting Problem-solving

Questions in Computer Science and Linguistics. In Proceeding of the 44th ACM

Technical Symposium on Computer Science Education (pp. 189–194). New York, NY,

USA: ACM. https://doi.org/10.1145/2445196.2445253

Randi, J., & Zeichner, K. M. (2004). New Visions of Teacher Professional Development.

Yearbook of the National Society for the Study of Education, 103(1), 180–227.

Randolph, J., Julnes, G., Sutinen, E., & Lehman, S. (2008). A methodological review of

computer science education research. Journal of Information Technology Education, 7,

135–162.

Rist, R. S. (2004). Learning to Program: Schema Creation, Application, and Evaluation. In

Computer Science Education Research (pp. 175–197). Taylor and Francis.

Roberts, E. (2004). The Dream of a Common Language: The Search for Simplicity and Stability

in Computer Science Education. In Proceedings of the 35th SIGCSE Technical

Symposium on Computer Science Education (pp. 115–119). New York, NY, USA: ACM.

https://doi.org/10.1145/971300.971343

Robertson, A. D., Atkins, L. J., & Levin, D. M. (2015). What is Responsive Teaching? In A. D.

Robertson, R. E. Scherr, & D. Hammer (Eds.), Responsive Teaching in Science and

Mathematics (pp. 1–35). New York, NY: Routledge.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review

and discussion. Computer Science Education, 13, 137–172.

Rodgers, C. R. (2002). Seeing Student Learning: Teacher Change and the Role of Reflection.

Voices inside Schools. Harvard Educational Review, 72(2), 230–53.

www.manaraa.com

300

Rodriguez, B., Rader, C., & Camp, T. (2016). Using Student Performance to Assess CS

Unplugged Activities in a Classroom Environment. In Proceedings of the 2016 ACM

Conference on Innovation and Technology in Computer Science Education (pp. 95–100).

New York, NY, USA: ACM. https://doi.org/10.1145/2899415.2899465

Ross, J. A., Cousins, J. B., Gadalla, T., & Hannay, L. (1999). Administrative Assignment of

Teachers in Restructuring Secondary Schools: The Effect of Out-of-Field Course

Responsibility on Teacher Efficacy. Educational Administration Quarterly, 35(5), 782–

805. https://doi.org/10.1177/00131619921968824

Ryoo, J., Goode, J., & Margolis, J. (2015). It takes a village: supporting inquiry- and equity-

oriented computer science pedagogy through a professional learning community.

Computer Science Education, 25(4), 351–370.

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2012). Pedagogical Content

Knowledge in Teaching Material. Journal of Educational Computing Research, 46(3),

267–293.

Saeli, M., Perrenet, J., Jochems, W., & Zwaneveld, B. (2010). Portraying the pedagogical

content knowledge of programming—The technical report. Retrieved from

https://www.tue.nl/fileadmin/content/universiteit/Over_de_universiteit/Eindhoven_Schoo

l_of_Education/Onderzoek/Projecten_promovendi/Mara_Saeli_SPJZ_Technical_Report.

pdf

Salish Research Consortium. (1997, June). Secondary Science and Mathematics Teacher

Preparation Programs: Influences on New Teachers and Their Students. Instrument

Package & User’s Guide. Retrieved from http://archive.org/details/ERIC_ED463974

www.manaraa.com

301

San Francisco Unified School District. (2015). Board Approves Plans to Expand Computer

Science Curriculum to All Grades [Press Release]. Retrieved from

http://www.sfusd.edu/en/news/current-news/2015-news-archive/06/board-approves-

plans-to-expand-computer-science-curriculum-to-all-grades.html

Schanzer, E., Fisler, K., Krishnamurthi, S., & Felleisen, M. (2015). Transferring Skills at Solving

Word Problems from Computing to Algebra Through Bootstrap. In Proceedings of the

46th ACM Technical Symposium on Computer Science Education (pp. 616–621). New

York, NY, USA: ACM. https://doi.org/10.1145/2676723.2677238

Schmidt, D. A., Baran, E., Thompson, A. D., Mishra, P., Koehler, M. J., & Shin, T. S. (2009).

Technological Pedagogical Content Knowledge (TPACK). Journal of Research on

Technology in Education, 42(2), 123–149.

https://doi.org/10.1080/15391523.2009.10782544

Schneider, R. M., & Plasman, K. (2011). Science Teacher Learning Progressions: A Review of

Science Teachers’ Pedagogical Content Knowledge Development. Review of Educational

Research, 0034654311423382. https://doi.org/10.3102/0034654311423382

Schon, D. A. (1983). The Reflective Practitioner: How Professionals Think In Action. Basic

Books.

Schulte, C. (2008). Block Model: An Educational Model of Program Comprehension As a Tool

for a Scholarly Approach to Teaching. In Proceedings of the Fourth International

Workshop on Computing Education Research (pp. 149–160). New York, NY, USA:

ACM. https://doi.org/10.1145/1404520.1404535

www.manaraa.com

302

Schulte, C., & Bennedsen, J. (2006). What Do Teachers Teach in Introductory Programming? In

Proceedings of the Second International Workshop on Computing Education Research

(pp. 17–28). New York, NY, USA: ACM. https://doi.org/10.1145/1151588.1151593

Schwandt, T. A. (2007). The SAGE Dictionary of Qualitative Inquiry. Third Edition. SAGE

Publications.

Scott, K. A., Clark, K., Hayes, E., Mruczek, C., & Sheridan, K. (2010). Culturally Relevant

Computing Programs: Two examples to Inform Teacher Professional Development (Vol.

2010, pp. 1269–1277). Presented at the Society for Information Technology & Teacher

Education International Conference. Retrieved from /p/33532/

Scott, K. A., & White, M. A. (2013). COMPUGIRLS’ Standpoint: Culturally Responsive

Computing and Its Effect on Girls of Color. Urban Education, 48(5), 657–681.

https://doi.org/10.1177/0042085913491219

Scruggs, T. E., Mastropieri, M. A., & McDuffie, K. A. (2007). Co-Teaching in Inclusive

Classrooms: A Metasynthesis of Qualitative Research. Exceptional Children, 73(4), 392–

416. https://doi.org/10.1177/001440290707300401

Seago, N. (2003). Using video as an object of inquiry for mathematics teaching and learning. In

Using Video in Teacher Education (Vol. 10, pp. 259–286). Emerald Group Publishing

Limited. https://doi.org/10.1016/S1479-3687(03)10010-7

Searle, K. A., & Kafai, Y. B. (2015). Boys’ Needlework: Understanding Gendered and

Indigenous Perspectives on Computing and Crafting with Electronic Textiles. In

Proceedings of the Eleventh Annual International Conference on International

www.manaraa.com

303

Computing Education Research (pp. 31–39). New York, NY, USA: ACM.

https://doi.org/10.1145/2787622.2787724

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cunniff, D., … Verno, A.

(2011). CSTA K-12 Computer Science Standards. Retrieved from

http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

Seehorn, D., Pirmann, T., Lash, T., Batista, L., Ryder, D., Sedwick, V., … Uche, C. (2016).

[Interim] CSTA K-12 Computer Science Standards. Retrieved from

http://www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INT

ERIM_StandardsFINAL_07222.pdf

Sengupta, P., & Wilensky, U. (2009). Learning Electricity with NIELS: Thinking with Electrons

and Thinking in Levels. International Journal of Computers for Mathematical Learning,

14(1), 21–50. https://doi.org/10.1007/s10758-009-9144-z

Shaw, A. C. (1995). Social construction and the inner city : design environments for social

development and urban renewal (Thesis). Massachusetts Institute of Technology.

Retrieved from http://dspace.mit.edu/handle/1721.1/29095

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational

Researcher, 15, 4–14.

Shulman, L. (1987). Knowledge and Teaching: Foundations of the New Reform. Harvard

Educational Review, 57(1), 1–23. https://doi.org/10.17763/haer.57.1.j463w79r56455411

Silverstein, S. C., Dubner, J., Miller, J., Glied, S., & Loike, J. D. (2009). Teachers’ Participation

in Research Programs Improves Their Students’ Achievement in Science. Science,

326(5951), 440–442. https://doi.org/10.1126/science.1177344

www.manaraa.com

304

Simmons, P. E., Emory, A., Carter, T., Coker, T., Finnegan, B., Crockett, D., … Labuda, K.

(1999). Beginning Teachers: Beliefs and Classroom Actions. Journal of Research in

Science Teaching, 36(8), 930–954. https://doi.org/10.1002/(SICI)1098-

2736(199910)36:8<930::AID-TEA3>3.0.CO;2-N

Simon, B., Kohanfars, M., Lee, J., Tamayo, K., & Cutts, Q. (2010). Experience report: peer

instruction in introductory computing. In Proceedings of the 41st ACM technical

symposium on Computer science education (pp. 341–345). New York, NY, USA: ACM.

https://doi.org/10.1145/1734263.1734381

Smith, J. P. (1996). Efficacy and Teaching Mathematics by Telling: A Challenge for Reform.

Journal for Research in Mathematics Education, 27(4), 387–402.

https://doi.org/10.2307/749874

Snelbecker, G. E., & Bhote, N. P. (1995). Elementary Versus Secondary School Teachers

Retraining to Teach Computer Science. Journal of Research on Computing in Education,

27(3), 336.

Solomon, C. (1986). Computer Environments for Children: A Reflection on Theories of Learning

and Education. MIT Press.

Sorva, J. (2012). Visual Programming Simulation in Introductory Programming Education.

Aalto University.

Spillane, J. P. (2005). Primary school leadership practice: how the subject matters. School

Leadership & Management, 25(4), 383–397.

https://doi.org/10.1080/13634230500197231

www.manaraa.com

305

Spohrer, J. G., & Soloway, E. (1986). Analyzing the high frequency bugs in novice programs. In

Papers presented at the first workshop on empirical studies of programmers (pp. 230–

251). Norwood, NJ, USA: Ablex Publishing Corp. Retrieved from

http://dl.acm.org/citation.cfm?id=21842.28897

Stake, R. E. (2000). Case Studies. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of

Qualitative Research (2 edition, pp. 435–454). Thousand Oaks, Calif: Sage Publications,

Inc.

Stanton, J., Goldsmith, L., Adrion, W. R., Dunton, S., Hendrickson, K., Peterfreund, A., …

Zinth, J. D. (2017). State of the States Landscape Report: State-Level Policies Supporting

Equitable K-12 Computer Science Education. BYN Mellon.

STEM + Computing Partnerships (STEM+C). (2016, December 30). National Science

Foundation. Retrieved from https://nsf.gov/pubs/2017/nsf17535/nsf17535.htm

Stephenson, C. (2000). A report on high school computer science education in five US states (p.

2003). Retrieved from http://www.holtsoft.com/chris/HSSurveyArt.pdf

Stigler, J. W., & Hiebert, J. (1999). The Teaching Gap: Best Ideas from the World’s Teachers for

Improving Education in the Classroom. New York: Free Press.

Strohecker, C. (1991). Elucidating styles of thinking about topology through thinking about

knots. In Constructionism. Norwood N.J.: Ablex Publishing Corp.

Swackhamer, L. E., Koellner, K., Basile, C., & Kimbrough, D. (2009). Increasing the Self-

Efficacy of Inservice Teachers through Content Knowledge. Teacher Education

Quarterly, 36(2), 63–78.

www.manaraa.com

306

Taub, R., Ben-Ari, M., & Armoni, M. (2009). The Effect of CS Unplugged on Middle-school

Students’ Views of CS. In Proceedings of the 14th Annual ACM SIGCSE Conference on

Innovation and Technology in Computer Science Education (pp. 99–103). New York,

NY, USA: ACM. https://doi.org/10.1145/1562877.1562912

Tedre, M., & Sutinen, E. (2008). Three traditions of computing: what educators should know.

Computer Science Education, 18(3), 153–170.

https://doi.org/10.1080/08993400802332332

The City of New York. (2016). Equity and Excellence: Mayor de Blasio Announces Reforms to

Raise Achievement Across all Public Schools [Press Release]. Retrieved from

http://www1.nyc.gov/office-of-the-mayor/news/618-15/equity-excellence-mayor-de-

blasio-reforms-raise-achievement-across-all-public

The College Board. (2014). Computer Science A: Course Description. Retrieved from

https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-a-

course-description.pdf

The College Board. (2015). AP Program Participation and Performance Data 2015: Program

Summary Report. Retrieved from https://secure-

media.collegeboard.org/digitalServices/pdf/research/2015/Program-Summary-Report-

2015.pdf

The Joint Task Force for Computing Curricula 2005. (2005). Computing Curricula 2005: The

Overview Report. New York, NY, USA: ACM.

The White House. (2016). FACT SHEET: President Obama Announces Computer Science For

All Initiative [Press Release]. Retrieved from https://www.whitehouse.gov/the-press-

www.manaraa.com

307

office/2016/01/30/fact-sheet-president-obama-announces-computer-science-all-initiative-

0

Tschannen-Moran, M., & Hoy, A. W. (2001). Teacher efficacy: capturing an elusive construct.

Teaching and Teacher Education, 17(7), 783–805. https://doi.org/10.1016/S0742-

051X(01)00036-1

Tschannen-Moran, M., Hoy, A. W., & Hoy, W. K. (1998). Teacher Efficacy: Its Meaning and

Measure. Review of Educational Research, 68(2), 202–248.

https://doi.org/10.2307/1170754

Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson, C., & Verno, A. (2006). A Model

Curriculum for K–12 Computer Science: Final Report of the ACM K–12 Task Force

Curriculum Committee Second Edition. Computer Science Teachers Association.

Turkle, S., & Papert, S. (1992). Epistemological Pluralism and the Revaluation of the Concrete.

Journal of Mathematical Behavior, 11, 3–33.

U.S. Census Bureau. (2015, August 5). State and County QuickFacts [Data file]. Retrieved

September 2, 2015, from http://quickfacts.census.gov/

van Driel, J. H., Verloop, N., & de Vos, W. (1998). Developing science teachers’ pedagogical

content knowledge. Journal of Research in Science Teaching, 35(6), 673–695.

https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<673::AID-TEA5>3.0.CO;2-J

van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers’ “learning to notice” in the context

of a video club. Teaching and Teacher Education, 24(2), 244–276.

https://doi.org/10.1016/j.tate.2006.11.005

www.manaraa.com

308

van Es, E. A., Stockero, S. L., Sherin, M. G., Zoest, L. R. V., & Dyer, E. (2015). Making the

Most of Teacher Self-Captured Video. Mathematics Teacher Educator, 4(1), 6–19.

https://doi.org/10.5951/mathteaceduc.4.1.0006

van Veen, K., Sleegers, P., Bergen, T., & Klaassen, C. (2001). Professional orientations of

secondary school teachers towards their work. Teaching and Teacher Education, 17(2),

175–194. https://doi.org/10.1016/S0742-051X(00)00050-0

Vermunt, J. D., & Endedijk, M. D. (2011). Patterns in Teacher Learning in Different Phases of

the Professional Career. Learning and Individual Differences, 21(3), 294–302.

Vihavainen, A., Airaksinen, J., & Watson, C. (2014). A Systematic Review of Approaches for

Teaching Introductory Programming and Their Influence on Success. In Proceedings of

the Tenth Annual Conference on International Computing Education Research (pp. 19–

26). New York, NY, USA: ACM. https://doi.org/10.1145/2632320.2632349

Wayne, A. J., & Youngs, P. (2003). Teacher Characteristics and Student Achievement Gains: A

Review. Review of Educational Research, 73(1), 89–122.

https://doi.org/10.3102/00346543073001089

Weinstein, M. (2006). TAMS Analyzer: Anthropology as Cultural Critique in a Digital Age.

Social Science Computer Review, 24(1), 68–77.

https://doi.org/10.1177/0894439305281496

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).

Defining Computational Thinking for Mathematics and Science Classrooms. Journal of

Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-

9581-5

www.manaraa.com

309

Weintrop, D., & Wilensky, U. (2015). To Block or Not to Block, That is the Question: Students’

Perceptions of Blocks-based Programming. In Proceedings of the 14th International

Conference on Interaction Design and Children (pp. 199–208). New York, NY, USA:

ACM. https://doi.org/10.1145/2771839.2771860

Weiss, I. R., Pasley, J. D., Smith, P. S., Banilower, E. R., & Heck, D. J. (2003). Looking Inside

the Classroom: A Study of K-12 Mathematics and Science Education in the United States.

Where computer science counts. (n.d.). Retrieved December 21, 2015, from

https://code.org/action

Whitworth, B., & Chiu, J. (2015). Professional Development and Teacher Change: The Missing

Leadership Link. Journal of Science Teacher Education, 26(2), 121–137.

Wilensky, U. (1995). Paradox, programming, and learning probability: A case study in a

connected mathematics framework. The Journal of Mathematical Behavior, 14(2), 253–

280. https://doi.org/10.1016/0732-3123(95)90010-1

Wilensky, U. (1997a). NetLogo Wolf Sheep Predation model. Northwestern University,

Evanston, IL.: Center for Connected Learning and Computer-Based Modeling. Retrieved

from http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation

Wilensky, U. (1997b). What is Normal Anyway? Therapy for Epistemological Anxiety.

Educational Studies in Mathematics, 33(2), 171–202.

https://doi.org/10.1023/A:1002935313957

Wilensky, U. (1999a). GasLab—an Extensible Modeling Toolkit for Connecting Micro-and

Macro-properties of Gases. In W. Feurzeig & N. Roberts (Eds.), Modeling and

www.manaraa.com

310

Simulation in Science and Mathematics Education (pp. 151–178). Springer New York.

https://doi.org/10.1007/978-1-4612-1414-4_7

Wilensky, U. (1999b). NetLogo. Northwestern University, Evanston, IL: Center for Connected

Learning and Computer-Based Modeling. Retrieved from

http://ccl.northwestern.edu/netlogo

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering Computational Literacy in Science

Classrooms. Commun. ACM, 57(8), 24–28. https://doi.org/10.1145/2633031

Wilkerson-Jerde, M. H., & Wilensky, U. J. (2015). Patterns, Probabilities, and People: Making

Sense of Quantitative Change in Complex Systems. Journal of the Learning Sciences,

24(2), 204–251. https://doi.org/10.1080/10508406.2014.976647

Williams, L. (2007). Lessons Learned from Seven Years of Pair Programming at North Carolina

State University. SIGCSE Bull., 39(4), 79–83. https://doi.org/10.1145/1345375.1345420

Williams, L. A., & Kessler, R. R. (2001). Experiments with Industry’s “Pair-Programming”

Model in the Computer Science Classroom. Computer Science Education, 11(1), 7–20.

https://doi.org/10.1076/csed.11.1.7.3846

Wilson, S. M., Rozelle, J. J., & Mikeska, J. N. (2011). Cacophony or Embarrassment of Riches:

Building a System of Support for Quality Teaching. Journal of Teacher Education, 62(4),

383–394.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49, 33–35.

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical

Transactions A, 366, 3717.

www.manaraa.com

311

Wong, S. S., & Luft, J. A. (2015). Secondary Science Teachers’ Beliefs and Persistence: A

Longitudinal Mixed-Methods Study. Journal of Science Teacher Education, 26(7), 619–

645. https://doi.org/10.1007/s10972-015-9441-4

Woollard, J. (2005). The Implications of the Pedagogic Metaphor for Teacher Education in

Computing. Technology, Pedagogy and Education, 14(2), 189–204.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational

Thinking in Elementary and Secondary Teacher Education. Trans. Comput. Educ., 14(1),

5:1–5:16. https://doi.org/10.1145/2576872

Yin, R. (2013). Case Study Research: Design and Methods (Fifth Edition edition). Los Angeles:

SAGE Publications, Inc.

Zendler, A., & Hubwieser, P. (2013). The influence of (research-based) teacher training

programs on evaluations of central computer science concepts. Teaching & Teacher

Education, 34, 130–142.

Zendler, A., & Klaudt, D. (2012). Central Computer Science Concepts to Research-Based

Teacher Training in Computer Science: An Experimental Study. Journal of Educational

Computing Research, 46(2), 153–172. https://doi.org/10.2190/EC.46.2.c

Zendler, A., McClung, O. W., & Klaudt, D. (2015). A Cross-Cultural Comparison of Concepts in

Computer Science Education. International Journal of Information & Learning

Technology, 32(4), 235–256.

www.manaraa.com

312

APPENDICES

www.manaraa.com

313

APPENDIX A

Pre-lesson Questionnaire

Thank you for completing this pre-observation questionnaire. Your responses will help me better
understand your goals and expectations for the upcoming lesson I will observe. It should take no
more than 30 minutes to complete.

1. Date of lesson to be observed

 MM DD YYYY
Date: / /

2. What is your role on your TEALS teaching team?

 High school teacher
 Volunteer

3. What unit(s) will your class be working on during the observation?

☐ Unit 1: Intro to Java and Static Methods ☐ Unit 0: Beginnings
☐ Unit 2: For Loops and Data Types ☐ Unit 1: SNAP Basics
☐ Unit 3: Conditionals, While Loops, String

Parsing
☐ Unit 2: Loops

☐ Unit 4: Arrays and Arraylists ☐ Unit 3: Variables and
Customization

☐ Unit 5: Objects ☐ Unit 4: Lists
☐ Unit 6: Inheritance, Polymorphism, Interfaces ☐ Unit 5: Cloning
☐ Unit 7: Searching and Sorting ☐ Unit 6: Final Project
☐ Unit 8: Recursion ☐ Culture Day
☐ Unit 9: AP Review
☐ Unit 10: After the AP Exam
☐ Other (please describe)

4. How comfortable are you with the unit(s)?

 Completely comfortable
 Somewhat comfortable
 Not at all comfortable

5. How well prepared do you feel to guide student learning of this content?

 Completely prepared

www.manaraa.com

314

 Somewhat prepared
 Not at all prepared

6. What is learning objective of this specific lesson?

7. Why is it important for students to know this?

8. How difficult is this learning objective compared to other topics covered in the course?

 Less difficult
 About the same difficulty
 More difficult

9. Where does this lesson fit in the sequence of the unit you are working on? What have the

students experienced prior to the lesson? What will they learn after the lesson?

10. What else do you know about this idea that you do not intend students to know yet?

11. What are the difficulties or limitations connected with teaching this topic?

12. What do you know about students’ thinking that will influence your teaching of this
topic?

13. What other factors will influence your teaching of this topic?

14. What teaching procedures will (would) you use to engage with this topic and why?

15. What technology will (would) you use to engage with this topic and why? (e.g.,
programming languages, programming environments, visualizations)

16. How will you know if this lesson is a success?

17. Is there anything else you would like to share about the lesson I will observe?

www.manaraa.com

315

APPENDIX B

Post-lesson Questionnaire

Thank you for allowing me to observe your TEALS class this week. This questionnaire asks you
to reflect on the lesson I observed and should take no more than 15 minutes to complete.

1. Date of lesson to be observed

 MM DD YYYY
Date: / /

2. What is your role on your TEALS teaching team?

 High school teacher
 Volunteer teacher

3. What was the main topic of this lesson?

4. How did you prepare to teach this topic?

5. What additional preparation do you need to teach this topic again?

6. What advice would you offer someone teaching this topic for the first time?

7. What resources were used to plan this lesson?

8. How did these resources support instruction and learning?

9. How did these resources hinder instruction and learning?

10. Will you plan another lesson to revisit the topic(s) covered today?

 Yes
 No
Please explain why or why not:

www.manaraa.com

316

11. Who on your TEALS team contributed to the following aspects of today’s lesson?

 Mostly
volunteer(s)

Both
volunteer(s)
and teacher

Mostly
teacher

No one

Developing the lesson
Delivering the lesson
Managing the classroom
Assisting students
Creating
assignments/assessments

Grading student work

12. How did the co-teaching model used during today’s lesson support and/or hinder
instruction and learning?

13. How did the co-teaching model used during today’s lesson support your development as
a computer science high school teacher?

14. Is there anything else you would like to share about the lesson I observed?

www.manaraa.com

317

APPENDIX C

Lesson Reflection Interview

1. How do you feel about how the lesson played out?

Ask the following questions if not mentioned by the teacher:

a. What aspects of the lesson supported student learning? student engagement?
b. What did you expect students would take away from the lesson? Did they?
c. What problems arose with instruction? with learning? How were the problems

addressed?
d. What would you revise?
e. Did anything surprise you about how students responded to the lesson?
f. Would you explain or present material differently than the volunteers did?

2. Can you describe the co-teaching model your team used today?

Ask the following questions if not mentioned by the teacher:

a. How well did the co-teaching model work?
b. What role did you take? What role did your volunteer take?
c. Did the co-teaching model prepare you to teach this lesson in the future? How?

www.manaraa.com

318

APPENDIX D

Think-aloud Interviews: Assessment Prompts

Interview script:
 Imagine another computer science teacher has approached you for feedback on these

test items she has put together [lay out 3 items]. She plans to give her students the
test to see if they have some of the common difficulties with [insert topic of
interview task].
 For each assessment item, describe what difficulties students might have in

answering it and if you would advise the teacher to include the item on her test.
 [After the teacher finishes the task] How might your students respond to these

assessment items?

www.manaraa.com

319

Arrays/lists (AP)

Item
1

Rewrite the following code to use arrays instead of ArrayLists:

public static void main(String[] args) {

 ArrayList<Integer> scores = new ArrayList<>();
 scores.add(50);
 scores.add(72);
 scores.add(34);
 for(int i=0; i < scores.size(); i++){
 System.out.println(scores.get(i));
 }
 boolean has50 = scores.contains(50);
 System.out.println("Does the list have a score of 50?");
 System.out.println(has50);
}

Item
2

Create a tracing table to show the value of fruits, temp, and i after each line
of the for loop is called:

public static void main(String args[]){
 String[] fruits = {"apple", "banana", "cherry", "date"};
 int len = fruits.length;

 for(int i=0; i < len/2; i++){
 String temp = fruits[i];
 fruits[i] = fruits[len-i-1];
 fruits[len-i-1] = temp;
 }
}

Item
3

public static void main(String[] args) {
 int[] arrayA = {10, 20, 30};
 int[] arrayB = new int[3];
 int[] arrayC = arrayA;

 arrayA[0] = 3;

 System.out.println(arrayC[0]);

 arrayC = arrayB;
 arrayB[0] = 9;
 System.out.println(arrayC[0]);
}

What does the code print?
a) 3
 0

b) 3
 9

c) 3
 null

d) 10
 0

e) 10
 9

f) 10
 null

www.manaraa.com

320

Arrays/lists (Intro)

Item
1

Rewrite the following script using one list to represent the notes:

www.manaraa.com

321

Item
2

Create a tracing table to show the value of , , and
 after each block is called in the following script:

Item
3

Your friend is trying to write a script that checks if the word ‘cantaloupe’
exists in a list of fruits, and, if so, changes the sprite’s costume.

Which of the following blocks could your friend use in the if block to make
the script run correctly? Select all the blocks that could work.

d)

e)

f)

www.manaraa.com

322

Conditionals (AP)

Item
1

Consider the following for loops:

I. for(int i = 0; i < 10; i++){
 System.out.println(i);
 }

II. for(int i = 0; i < 20; i = i + 2){
 System.out.println(i);
 }

III. for (int i = 0; i <= 9; i++){
 System.out.println(i);
 }

IV. for (int i = 5; i <= 15; i++){
 System.out.println(i);
 }

Which of these for loops is executed exactly 10 times? For those that are
not executed 10 times, how many times are they executed?

Item
2

What does the following method do?

public static int ranking(int num1, int num2, int num3){
 if (num1 < num2){
 if (num2 < num3){
 return num3;
 }
 else{
 return num2;
 }
 }
 else{
 if (num1 < num3){
 return num3;
 }
 else{
 return num1;
 }
 }
}

www.manaraa.com

323

Item
3

The following code is supposed to ask a user for their age and report if the
age is an even number between 10 and 100. Rewrite this code to fix the four
errors it contains.

Scanner console = new Scanner(System.in);
System.out.println("Enter your age:");
int age = console.nextInt();

if(age % 2 = 0){
 System.out.println("Your age is an even number.");
}
else{
 if (age < 10){
 if (age > 100){
 System.out.println("And you are between 10 and 100");
 }
 }
}

www.manaraa.com

324

Conditionals (Intro)

Item
1

Translate the following English statements into Snap! blocks using operator
blocks, , and :

a. and are of opposite signs (e.g., -3 and
3)

b. is closer in value to 0 than

c. is more than twice as large as

Item
2

Consider the following script:

a) When will the sprite’s pen be blue?

b) Complete the following table to show which values can turn your
sprite a given color:

 Color of Sprite

3 Blue
 7 Yellow
4 4

www.manaraa.com

325

Item
3

Explain why the following script will not work as intended and propose a fix.

www.manaraa.com

326

APPENDIX E

Think-aloud Interviews: Student Work Prompts

Interview script:
 A group of students were presented with this task [lay out the task] and handed in these

solutions [lay out the 3 solutions].
 For each solution, discuss what problem that student was having and how you would help

address their difficulty.
 [After the teacher finishes the task] How might your students respond to this task?

www.manaraa.com

327

Looping (AP)

The following code simulates a
counter that goes from 0 0 to 1 9.
Rewrite this code using for loops.

 int num1 = 0;
 int num2 = 0;

 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);

 num1 = 0;
 num2 = num2 + 1;

 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);
 num1 = num1 + 1;
 System.out.println(num2 + " " + num1);

Solution 1

for (int num2 = 0; num2 <= 1; num2++){
 System.out.println(num2);
}
for (int num1 = 0; num1 <= 9; num1++){
 System.out.println(" " + num1);
}

Solution 2

for (int num2 = 0; num2 <= 1; num2++){
 num2 = num2 - 1;
 for (int num1 = 0; num1 <= 9; num1++){
 num1 = num1 - 1;
 System.out.println(num2 + " " + num1);
 }
}

Solution 3

for (int num2 = 0; num2 < 1; num2++){
 for (int num1 = 0; num1 < 9; num1++){
 System.out.println(num2 + " " + num1);
 }
}

www.manaraa.com

328

Looping (Intro)

Task Write a script that creates a square like the one below where the opposite
sides are the same color.

Sol. 1

Sol. 2 Sol. 3

www.manaraa.com

329

Variables (AP)

Task Consider the following static method:

 public static int calculate(int x){
 x = x + x;
 x = x + x;
 x = x + x;

 return x;
 }

Replace the body of calculate with one line of code so that the modified
version of calculate will return the same result as the original version for
all x.

Sol. 1 return 3 + x;

Sol. 2 return 3 * x;

Sol. 3 return 6 * x;

www.manaraa.com

330

Variables (Intro)

Task Create a script that moves your sprite forward twice towards the right
edge of the screen. Each time the sprite moves, it should move forward a
new random number of times.

Soln. 1

Soln. 2

Soln. 3

www.manaraa.com

331

APPENDIX F

Think-aloud Interviews: Instructional Material Prompts

Interview Script:
I would like for you to watch these two short videos that explain [insert selected topic]. For each
video, describe how well it presents the topic, if it needs any modification, and if you would use
it in your instruction.

Inheritance/Cloning (AP)

a) https://www.youtube.com/watch?v=MkFP0vNddqw

b) https://www.youtube.com/watch?v=gWpg3yMiL0M

https://www.youtube.com/watch?v=MkFP0vNddqw
https://www.youtube.com/watch?v=gWpg3yMiL0M

www.manaraa.com

332

Inheritance/Cloning (Intro)

[Remind the teacher that these videos show cloning in Scratch, not in Snap!.]

a) https://www.youtube.com/watch?v=Zif_mYup7rA

b) https://www.youtube.com/watch?v=pHrkUsrv9p4

https://www.youtube.com/watch?v=Zif_mYup7rA
https://www.youtube.com/watch?v=pHrkUsrv9p4

www.manaraa.com

333

APPENDIX G

Observation Protocol I

www.manaraa.com

334

APPENDIX H

Observation Protocol II

www.manaraa.com

335

www.manaraa.com

336

APPENDIX I

PCK Questionnaire

1. List the difficulties students have with linear data structures (i.e., arrays and lists in AP CS A,
lists in Intro CS). For each difficulty:

• provide a description of the difficulty
• indicate the frequency with which you see the difficulty when teaching (always,

sometimes, rarely, never – you are aware of the difficulty but haven’t seen it with your
students)

• describe how you address the difficulty

Please list as many difficulties as you can, adding additional rows if needed.

Difficulty Frequency How you address difficulty

2. List all of the types of lessons and activities you would plan around linear data structures. For
each lesson/activity:

• provide a description of the lesson/activity
• describe your rationale for using the lesson/activity
• describe all the ways you help students who have difficulty understanding the

lesson/activity

Please add additional rows if needed.

Lesson/activity Rationale How you help students
who have difficulty

3. What are the most challenging topics covered in your course? For each topic, do you address

these topics differently than other topics? If so, how?

www.manaraa.com

337

APPENDIX J

Difficult Computing Topics for Introductory Computer Programming Courses
Ranking from Schulte & Bennedsen (2006) Ranking from Dale (2006)
Recursion Problem solving
Algorithm efficiency (Big-O) Parameters
Generics (templates, type parameterisation) Algorithm, functional decomposition, function
Advanced data-structures (Linked-lists, Trees) Object-oriented problem solving and design
Polymorphism and inheritance Arrays
Pointers and references Test/testing, debugging
Design of classes1 Recursion
Problem solving strategies Pointers
Responsibility driven design, CRC Polymorphism
Algorithm design Function, method
Static vs. non-static (methods and variables) Inheritance
Debugging Loops
Object communication Class
Design of methods Method
Scope of variables Object-oriented concepts
Design of classes1 Oject interaction
Parameters
Encapsulation
Instance and other type of variables
The concept of objects and classes
The libraries associated with the language
Simple Data structures (arrays, Strings, …)
Mental model of the computer
The programming language syntax
Selection and Iteration
Using the program development environment
UML Class Diagrams (reading them)
Ethics
1One of these topics was mislabeled in Schulte & Bennedsen (2006) and should be design of
single classes.
Note: Topics are listed from most difficult to least difficult.

www.manaraa.com

338

VITA

Aleata Kimberly Hubbard

Education
2017 Ph.D., Learning Sciences, Northwestern University, Evanston, IL (expected 9/2017)
2012 M.A., Learning Sciences, Northwestern University, Evanston, IL
2006 B.S. (H&SS Honors), Computer Science and French and Francophone Studies,

Carnegie Mellon University, Pittsburgh, PA

Related Professional Experience
2013 -
present

Research Associate, Science, Technology, Engineering, and Mathematics Program
WestEd, Redwood City, CA

 Research: Investigating an on-the-job training program for high school teachers
transitioning into computer science. Primary responsibilities include project
management, case study design and implementation, site visits, observation team
supervision, qualitative data analysis, and dissemination. (NSF-funded EHR Core
Research study)

Program Evaluation: supporting clients in assessing and improving the effectiveness
of their educational programs through logic model development, instrument
creation, site visits, interviews, data analysis, and report writing. Evaluation projects
include:

San Jose State University, a project to develop a new technology-focused minor
for students in the social and behavioral sciences (NSF-funded IUSE project)

Stanford Global Studies, community outreach programs to support high school
and community college faculty in internationalizing course curricula (U.S.
DOE-funded National Resource Center)

ETR Associates, a pilot program to create ICT pathways for Latino and Latina
youth through partnerships between high schools, community colleges, and
industry (NSF-funded Advanced Technological Education project)

All Star Code Summer Intensive, a six-week summer program introducing high
school boys of color to computing and the tech industry

MATHCOUNTS Reel Math Challenge, a national competition for middle
school students to produce short videos introducing math concepts

www.manaraa.com

339

Data Management: developing data architectures to support data cleaning and
quality assurance for large-scale efficacy studies, supervising data management
team, training staff in best practices for data management and R programming.
Projects include:

Khan Academy Resources for Maximizing Mathematics Achievement: A
Postsecondary Mathematics Efficacy Study (3-year IES-funded efficacy study)

National Research & Development Center on Cognition and Mathematics
Instruction (5-year NSF-funded efficacy study)

2012-
2013

Research Assistant, Science, Technology, Engineering, and Mathematics Program
WestEd, Redwood City, CA

 Managed teams involved in research instrument integrity and gathering
demographic and assessment data for educational research projects. Developed logic
models, wrote literature reviews, and designed research plans to contribute to grant
proposals in mathematics education and educational technology. Trained staff in
developing databases to manage study data and participant information.

2008-
2009

Teaching Fellow, Meltwater Entrepreneurial School of Technology
Meltwater, Accra, Ghana

 Designed and taught courses on product development, databases, and web
technologies to a cohort of 20 young adults.

Related Publications and Presentations
Hubbard, A., & Kao, Y. (2017, March). Computer Science Teaching Knowledge: A Framework

and Assessment. In Proceedings of the 48th ACM Technical Symposium on Computing
Science Education. New York, NY, USA: ACM.

Hubbard, A. K., Kao, Y., Brown, D. (2016). Designing Think-aloud Interviews to Elicit Evidence
of Computer Science Pedagogical Content Knowledge. Paper presented at the 2016 Annual
Meeting of the American Educational Research Association, Washington, D.C.

Kao, Y. S., DeLyser, L. A., & Hubbard, A. K. (2016, March). Assessing the Development of
Computer Science Pedagogical Content Knowledge in the TEALS Program. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education (pp. 695–695).
New York, NY, USA: ACM.

Hubbard, A., & Kao, Y. (2014). Industry partnerships to support computer science high school
teachers’ pedagogical content knowledge. In Proceedings of the 15th Annual Conference on
Information technology education (pp. 89–90). Atlanta, Georgia, USA: ACM.

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1 Statement of the Problem
	1.2 Overview of the Study
	1.3 Significance of the Study
	1.4 Limitations
	1.5 Definition of Terms
	1.6 Outline

	Chapter 2. Literature Review
	2.1 Introduction
	2.2 Synthesis of CS PCK Literature
	2.2.1. Methods
	2.2.2. Findings
	Research on Teacher Knowledge and Learning.
	Prior CSER Reviews.
	Landscape surveys.
	Methodological reviews.
	Teacher preparation reviews.
	Summary.

	Conceptualizations of CS PCK.
	Summary.

	Investigations of CS PCK.
	Interviews.
	Classroom Observations.
	Meeting observations.
	Tasks.
	Document analysis.
	Summary.

	Factors Influencing CS PCK Development.
	Dynamic discipline.
	Working environments.
	Community.
	Beliefs and identity.
	Classroom implementation.
	Summary.

	2.3 Computer Science Learning and Teaching
	2.3.1. Nature of CS
	2.3.2. Computing Education
	Origins of Computing Education.
	Computer Science.
	Computing in Other Disciplines.
	Summary.

	2.3.3. Transitioning to CS Teaching

	2.4 Conceptual Frameworks
	2.4.1. CS PCK Development Framework
	2.4.2. CS PCK Framework
	2.4.3. Research Questions

	Chapter 3. Methods
	3.1 Methodology
	3.2 Professional Development Program
	3.3 Participants and Context
	3.3.1. Participating Teachers
	Mr. Edwards.
	Ms. Jones.
	Ms. King.
	Mr. Miller.
	Mr. Perez.
	Ms. Robinson.

	3.3.2. Professional Development Stages
	3.3.3. Locale
	3.3.4. Schools

	3.4 Data Collection Procedures
	3.5 Data Sources
	3.5.1. Pre-lesson Questionnaire
	3.5.2. Post-lesson Questionnaire
	3.5.3. Lesson Reflection Interview
	3.5.4. Think-aloud Interview
	3.5.5. CoRe Reflection Interview
	3.5.6. Observation Protocol I
	3.5.7. Observation Protocol II
	3.5.8. PCK Questionnaire
	3.5.9. Teaching Beliefs Questionnaire
	3.5.10. Main Study Tasks

	3.6 Data Reduction
	3.6.1. Interview Transcripts and Unitization
	3.6.2. Questionnaire Item Selection
	3.6.3. Observation Protocols

	3.7 Data Analysis
	3.7.1. Interviews and Open-ended Questionnaire Items
	3.7.2. Closed-ended Questionnaire Items
	3.7.3. Observations
	3.7.4. PCK Questionnaire
	3.7.5. Teaching Beliefs Questionnaire
	3.7.6. Content Assessment

	3.8 Trustworthiness
	3.8.1. Data Source and Method Triangulation
	3.8.2. Analyst Triangulation
	Reliability of Observation Data.
	Reliability of Coding.

	3.8.3. Prolonged Engagement and Persistent Observation

	3.9 Researcher’s Role

	Chapter 4. CS Teaching Knowledge
	4.1 Introduction
	4.2 Research on Learning and Teaching CS
	4.2.1. Knowledge of Student Understanding
	4.2.2. Instructional Strategies
	4.2.3. Linear Data Structures

	4.3 Method
	4.3.1. Participants
	4.3.2. Data Collection
	4.3.3. Data Analysis
	Linear data structures.
	Most difficult computing topics.
	Content Knowledge.

	4.4 Results
	4.4.1. Linear Data Structures
	Summary.

	4.4.2. Most Difficult Computing Topics
	Summary.

	4.4.3. Content Knowledge
	Summary.

	4.5 Discussion
	Limitations.

	Chapter 5. Instructional Responsibilities
	5.1 Introduction
	5.2 Research on Instructional Responsibilities
	5.3 Method
	5.3.1. Participants
	5.3.2. Data Collection and Analysis

	5.4 Results
	5.4.1. Instructional Responsibilities
	Observed instructional responsibilities.
	Examples of instructional responsibilities.
	Summary.

	5.4.2. Relationship Between Responsibilities and Teaching Knowledge
	Creating and modifying instructional materials.
	Reviewing instructional materials.
	Finding materials.
	Instructional delivery.
	Evaluation of learning.
	Other responsibilities.
	Summary.

	5.5 Discussion
	Limitations.

	Chapter 6. Confidence, Epistemologies, and Teaching
	6.1 Introduction
	6.2 Research on Confidence and Epistemologies
	6.2.1. Confidence
	6.2.2. Epistemological Beliefs

	6.3 Methods
	6.3.1. Participants
	6.3.2. Data Collection and Analysis
	Confidence ratings.
	Epistemological beliefs questionnaire.

	6.4 Results
	6.4.1. Feelings of Confidence
	Meanings of comfort and preparedness.
	Patterns of comfort and preparedness.
	Factors influencing confidence.
	Summary.

	6.4.2. Beliefs about Teaching and Learning
	Beliefs about teaching.
	Beliefs about learning.
	Epistemological beliefs across domains.
	Summary.

	6.5 Discussion
	Limitations.

	Chapter 7. Discussion
	7.1 Summary of Findings
	7.2 Implications for Research
	7.3 Implications for Policy and Practice
	7.4 Conclusion

	References
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	Vita

